DL-Art-School/codes/models/networks.py

141 lines
11 KiB
Python
Raw Normal View History

2019-08-23 13:42:47 +00:00
import torch
import models.archs.SRResNet_arch as SRResNet_arch
import models.archs.discriminator_vgg_arch as SRGAN_arch
import models.archs.DiscriminatorResnet_arch as DiscriminatorResnet_arch
import models.archs.DiscriminatorResnet_arch_passthrough as DiscriminatorResnet_arch_passthrough
import models.archs.FlatProcessorNetNew_arch as FlatProcessorNetNew_arch
2019-08-23 13:42:47 +00:00
import models.archs.RRDBNet_arch as RRDBNet_arch
import models.archs.HighToLowResNet as HighToLowResNet
import models.archs.NestedSwitchGenerator as ng
import models.archs.feature_arch as feature_arch
import models.archs.SwitchedResidualGenerator_arch as SwitchedGen_arch
import models.archs.SRG1_arch as srg1
2020-06-07 00:29:25 +00:00
import functools
2019-08-23 13:42:47 +00:00
# Generator
def define_G(opt, net_key='network_G'):
opt_net = opt[net_key]
2019-08-23 13:42:47 +00:00
which_model = opt_net['which_model_G']
2020-04-22 06:37:41 +00:00
scale = opt['scale']
2019-08-23 13:42:47 +00:00
# image restoration
if which_model == 'MSRResNet':
netG = SRResNet_arch.MSRResNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'],
nf=opt_net['nf'], nb=opt_net['nb'], upscale=opt_net['scale'])
elif which_model == 'RRDBNet':
2020-04-22 06:37:41 +00:00
# RRDB does scaling in two steps, so take the sqrt of the scale we actually want to achieve and feed it to RRDB.
initial_stride = 1 if 'initial_stride' not in opt_net else opt_net['initial_stride']
assert initial_stride == 1 or initial_stride == 2
# Need to adjust the scale the generator sees by the stride since the stride causes a down-sample.
gen_scale = scale * initial_stride
2019-08-23 13:42:47 +00:00
netG = RRDBNet_arch.RRDBNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'],
2020-06-02 17:15:55 +00:00
nf=opt_net['nf'], nb=opt_net['nb'], scale=gen_scale, initial_stride=initial_stride)
2020-05-24 03:09:21 +00:00
elif which_model == 'AssistedRRDBNet':
netG = RRDBNet_arch.AssistedRRDBNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'],
nf=opt_net['nf'], nb=opt_net['nb'], scale=scale)
elif which_model == 'LowDimRRDBNet':
2020-06-14 17:02:16 +00:00
gen_scale = scale * opt_net['initial_stride']
rrdb = functools.partial(RRDBNet_arch.LowDimRRDB, nf=opt_net['nf'], gc=opt_net['gc'], dimensional_adjustment=opt_net['dim'])
netG = RRDBNet_arch.RRDBNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'],
2020-06-14 17:02:16 +00:00
nf=opt_net['nf'], nb=opt_net['nb'], scale=gen_scale, rrdb_block_f=rrdb, initial_stride=opt_net['initial_stride'])
2020-06-09 19:28:55 +00:00
elif which_model == 'PixRRDBNet':
block_f = None
if opt_net['attention']:
block_f = functools.partial(RRDBNet_arch.SwitchedRRDB, nf=opt_net['nf'], gc=opt_net['gc'],
init_temperature=opt_net['temperature'],
final_temperature_step=opt_net['temperature_final_step'])
if opt_net['mhattention']:
block_f = functools.partial(RRDBNet_arch.SwitchedMultiHeadRRDB, num_convs=8, num_heads=2, nf=opt_net['nf'], gc=opt_net['gc'],
init_temperature=opt_net['temperature'],
final_temperature_step=opt_net['temperature_final_step'])
2020-06-09 19:28:55 +00:00
netG = RRDBNet_arch.PixShuffleRRDB(nf=opt_net['nf'], nb=opt_net['nb'], gc=opt_net['gc'], scale=scale, rrdb_block_f=block_f)
elif which_model == "ConfigurableSwitchedResidualGenerator":
netG = srg1.ConfigurableSwitchedResidualGenerator(switch_filters=opt_net['switch_filters'], switch_growths=opt_net['switch_growths'],
switch_reductions=opt_net['switch_reductions'],
switch_processing_layers=opt_net['switch_processing_layers'], trans_counts=opt_net['trans_counts'],
trans_kernel_sizes=opt_net['trans_kernel_sizes'], trans_layers=opt_net['trans_layers'],
trans_filters_mid=opt_net['trans_filters_mid'],
initial_temp=opt_net['temperature'], final_temperature_step=opt_net['temperature_final_step'],
2020-06-25 01:49:37 +00:00
heightened_temp_min=opt_net['heightened_temp_min'], heightened_final_step=opt_net['heightened_final_step'],
upsample_factor=scale, add_scalable_noise_to_transforms=opt_net['add_noise'])
elif which_model == "ConfigurableSwitchedResidualGenerator2":
netG = SwitchedGen_arch.ConfigurableSwitchedResidualGenerator2(switch_filters=opt_net['switch_filters'], switch_growths=opt_net['switch_growths'],
switch_reductions=opt_net['switch_reductions'],
switch_processing_layers=opt_net['switch_processing_layers'], trans_counts=opt_net['trans_counts'],
trans_kernel_sizes=opt_net['trans_kernel_sizes'], trans_layers=opt_net['trans_layers'],
2020-06-26 00:36:06 +00:00
transformation_filters=opt_net['transformation_filters'],
2020-06-25 01:49:37 +00:00
initial_temp=opt_net['temperature'], final_temperature_step=opt_net['temperature_final_step'],
heightened_temp_min=opt_net['heightened_temp_min'], heightened_final_step=opt_net['heightened_final_step'],
upsample_factor=scale, add_scalable_noise_to_transforms=opt_net['add_noise'])
elif which_model == "ConfigurableSwitchedResidualGenerator3":
netG = SwitchedGen_arch.ConfigurableSwitchedResidualGenerator3(trans_counts=opt_net['trans_counts'],
trans_kernel_sizes=opt_net['trans_kernel_sizes'], trans_layers=opt_net['trans_layers'],
transformation_filters=opt_net['transformation_filters'],
initial_temp=opt_net['temperature'], final_temperature_step=opt_net['temperature_final_step'],
heightened_temp_min=opt_net['heightened_temp_min'], heightened_final_step=opt_net['heightened_final_step'],
upsample_factor=scale, add_scalable_noise_to_transforms=opt_net['add_noise'])
elif which_model == "NestedSwitchGenerator":
netG = ng.NestedSwitchedGenerator(switch_filters=opt_net['switch_filters'],
switch_reductions=opt_net['switch_reductions'],
switch_processing_layers=opt_net['switch_processing_layers'], trans_counts=opt_net['trans_counts'],
trans_kernel_sizes=opt_net['trans_kernel_sizes'], trans_layers=opt_net['trans_layers'],
transformation_filters=opt_net['transformation_filters'],
initial_temp=opt_net['temperature'], final_temperature_step=opt_net['temperature_final_step'],
heightened_temp_min=opt_net['heightened_temp_min'], heightened_final_step=opt_net['heightened_final_step'],
upsample_factor=scale, add_scalable_noise_to_transforms=opt_net['add_noise'])
# image corruption
elif which_model == 'HighToLowResNet':
netG = HighToLowResNet.HighToLowResNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'],
nf=opt_net['nf'], nb=opt_net['nb'], downscale=opt_net['scale'])
elif which_model == 'FlatProcessorNet':
'''netG = FlatProcessorNet_arch.FlatProcessorNet(in_nc=opt_net['in_nc'], out_nc=opt_net['out_nc'],
nf=opt_net['nf'], downscale=opt_net['scale'], reduce_anneal_blocks=opt_net['ra_blocks'],
assembler_blocks=opt_net['assembler_blocks'])'''
netG = FlatProcessorNetNew_arch.fixup_resnet34(num_filters=opt_net['nf'])\
2020-04-22 06:37:41 +00:00
2019-08-23 13:42:47 +00:00
else:
raise NotImplementedError('Generator model [{:s}] not recognized'.format(which_model))
return netG
# Discriminator
def define_D(opt):
2020-04-22 06:37:41 +00:00
img_sz = opt['datasets']['train']['target_size']
2019-08-23 13:42:47 +00:00
opt_net = opt['network_D']
which_model = opt_net['which_model_D']
if which_model == 'discriminator_vgg_128':
netD = SRGAN_arch.Discriminator_VGG_128(in_nc=opt_net['in_nc'], nf=opt_net['nf'], input_img_factor=img_sz // 128, extra_conv=opt_net['extra_conv'])
elif which_model == 'discriminator_resnet':
2020-05-02 01:56:14 +00:00
netD = DiscriminatorResnet_arch.fixup_resnet34(num_filters=opt_net['nf'], num_classes=1, input_img_size=img_sz)
elif which_model == 'discriminator_resnet_passthrough':
netD = DiscriminatorResnet_arch_passthrough.fixup_resnet34(num_filters=opt_net['nf'], num_classes=1, input_img_size=img_sz,
number_skips=opt_net['number_skips'], use_bn=True,
disable_passthrough=opt_net['disable_passthrough'])
2020-07-06 03:49:09 +00:00
elif which_model == 'discriminator_pix':
netD = SRGAN_arch.Discriminator_VGG_PixLoss(in_nc=opt_net['in_nc'], nf=opt_net['nf'])
2019-08-23 13:42:47 +00:00
else:
raise NotImplementedError('Discriminator model [{:s}] not recognized'.format(which_model))
return netD
# Define network used for perceptual loss
def define_F(opt, use_bn=False):
gpu_ids = opt['gpu_ids']
device = torch.device('cuda' if gpu_ids else 'cpu')
if 'which_model_F' not in opt['train'].keys() or opt['train']['which_model_F'] == 'vgg':
# PyTorch pretrained VGG19-54, before ReLU.
if use_bn:
feature_layer = 49
else:
feature_layer = 34
netF = feature_arch.VGGFeatureExtractor(feature_layer=feature_layer, use_bn=use_bn,
use_input_norm=True, device=device)
elif opt['train']['which_model_F'] == 'wide_resnet':
netF = feature_arch.WideResnetFeatureExtractor(use_input_norm=True, device=device)
2019-08-23 13:42:47 +00:00
netF.eval() # No need to train
return netF