forked from mrq/DL-Art-School
149 lines
5.8 KiB
Python
149 lines
5.8 KiB
Python
|
import math
|
||
|
from typing import Optional
|
||
|
|
||
|
import torch
|
||
|
from torch import nn, Tensor
|
||
|
from torch.nn import functional as F
|
||
|
|
||
|
import torch.distributed as distributed
|
||
|
|
||
|
from models.vqvae.vqvae import Quantize
|
||
|
from trainer.networks import register_model
|
||
|
from utils.util import checkpoint, opt_get
|
||
|
|
||
|
|
||
|
class PositionalEncoding(nn.Module):
|
||
|
def __init__(self, d_model, dropout=0.1, max_len=5000):
|
||
|
super(PositionalEncoding, self).__init__()
|
||
|
self.dropout = nn.Dropout(p=dropout)
|
||
|
|
||
|
pe = torch.zeros(max_len, d_model)
|
||
|
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
||
|
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
||
|
pe[:, 0::2] = torch.sin(position * div_term)
|
||
|
pe[:, 1::2] = torch.cos(position * div_term)
|
||
|
pe = pe.unsqueeze(0)
|
||
|
self.register_buffer('pe', pe)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = x + self.pe[:, :x.size(1)]
|
||
|
return self.dropout(x)
|
||
|
|
||
|
|
||
|
class TransformerEncoderLayer(nn.Module):
|
||
|
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
|
||
|
layer_norm_eps=1e-5, device=None, dtype=None) -> None:
|
||
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
||
|
super(TransformerEncoderLayer, self).__init__()
|
||
|
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout, batch_first=True,
|
||
|
**factory_kwargs)
|
||
|
# Implementation of Feedforward model
|
||
|
self.linear1 = nn.Linear(d_model, dim_feedforward, **factory_kwargs)
|
||
|
self.linear2 = nn.Linear(dim_feedforward, d_model, **factory_kwargs)
|
||
|
self.norm1 = nn.BatchNorm1d(d_model)
|
||
|
self.norm2 = nn.BatchNorm1d(d_model)
|
||
|
|
||
|
self.activation = nn.ReLU()
|
||
|
|
||
|
def __setstate__(self, state):
|
||
|
if 'activation' not in state:
|
||
|
state['activation'] = F.relu
|
||
|
super(TransformerEncoderLayer, self).__setstate__(state)
|
||
|
|
||
|
def forward(self, src: Tensor, src_mask: Optional[Tensor] = None, src_key_padding_mask: Optional[Tensor] = None) -> Tensor:
|
||
|
src2 = self.self_attn(src, src, src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
|
||
|
src = src + src2
|
||
|
src = self.norm1(src.permute(0,2,1)).permute(0,2,1)
|
||
|
src2 = self.linear2(self.activation(self.linear1(src)))
|
||
|
src = src + src2
|
||
|
src = self.norm2(src.permute(0,2,1)).permute(0,2,1)
|
||
|
return src
|
||
|
|
||
|
|
||
|
class Encoder(nn.Module):
|
||
|
def __init__(self, in_channel, channel, output_breadth, num_layers=8, compression_factor=8):
|
||
|
super().__init__()
|
||
|
|
||
|
self.compression_factor = compression_factor
|
||
|
self.pre_conv_stack = nn.Sequential(nn.Conv1d(in_channel, channel//4, kernel_size=3, padding=1),
|
||
|
nn.ReLU(),
|
||
|
nn.Conv1d(channel//4, channel//2, kernel_size=3, stride=2, padding=1),
|
||
|
nn.ReLU(),
|
||
|
nn.Conv1d(channel//2, channel//2, kernel_size=3, padding=1),
|
||
|
nn.ReLU(),
|
||
|
nn.Conv1d(channel//2, channel, kernel_size=3, stride=2, padding=1))
|
||
|
self.norm1 = nn.BatchNorm1d(channel)
|
||
|
self.positional_embeddings = PositionalEncoding(channel, max_len=output_breadth//4)
|
||
|
self.encode = nn.TransformerEncoder(TransformerEncoderLayer(d_model=channel, nhead=4, dim_feedforward=channel*2), num_layers=num_layers)
|
||
|
|
||
|
def forward(self, input):
|
||
|
x = self.norm1(self.pre_conv_stack(input)).permute(0,2,1)
|
||
|
x = self.positional_embeddings(x)
|
||
|
x = self.encode(x)
|
||
|
return x[:,:input.shape[2]//self.compression_factor,:]
|
||
|
|
||
|
|
||
|
class Decoder(nn.Module):
|
||
|
def __init__(
|
||
|
self, in_channel, out_channel, channel, output_breadth, num_layers=6
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
self.initial_conv = nn.Conv1d(in_channel, channel, kernel_size=1)
|
||
|
self.expand = output_breadth
|
||
|
self.positional_embeddings = PositionalEncoding(channel, max_len=output_breadth)
|
||
|
self.encode = nn.TransformerEncoder(TransformerEncoderLayer(d_model=channel, nhead=4, dim_feedforward=channel*2), num_layers=num_layers)
|
||
|
self.final_conv_stack = nn.Sequential(nn.Conv1d(channel, channel, kernel_size=3, padding=1),
|
||
|
nn.ReLU(),
|
||
|
nn.Conv1d(channel, out_channel, kernel_size=3, padding=1))
|
||
|
|
||
|
def forward(self, input):
|
||
|
x = self.initial_conv(input.permute(0,2,1)).permute(0,2,1)
|
||
|
x = nn.functional.pad(x, (0,0,0, self.expand-input.shape[1]))
|
||
|
x = self.positional_embeddings(x)
|
||
|
x = self.encode(x).permute(0,2,1)
|
||
|
return self.final_conv_stack(x)
|
||
|
|
||
|
|
||
|
class VQVAE(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
data_channels=1,
|
||
|
channel=256,
|
||
|
codebook_dim=256,
|
||
|
codebook_size=512,
|
||
|
breadth=80,
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
self.enc = Encoder(data_channels, channel, breadth)
|
||
|
self.quantize_dense = nn.Linear(channel, codebook_dim)
|
||
|
self.quantize = Quantize(codebook_dim, codebook_size)
|
||
|
self.dec = Decoder(codebook_dim, data_channels, channel, breadth)
|
||
|
|
||
|
def forward(self, input):
|
||
|
input = input.unsqueeze(1)
|
||
|
quant, diff, _ = self.encode(input)
|
||
|
dec = checkpoint(self.dec, quant)
|
||
|
dec = dec.squeeze(1)
|
||
|
return dec, diff
|
||
|
|
||
|
def encode(self, input):
|
||
|
enc = checkpoint(self.enc, input)
|
||
|
quant = self.quantize_dense(enc)
|
||
|
quant, diff, id = self.quantize(quant)
|
||
|
diff = diff.unsqueeze(0)
|
||
|
return quant, diff, id
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def register_vqvae_xform_audio(opt_net, opt):
|
||
|
kw = opt_get(opt_net, ['kwargs'], {})
|
||
|
vq = VQVAE(**kw)
|
||
|
return vq
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
model = VQVAE()
|
||
|
res=model(torch.randn(4,80))
|
||
|
print(res[0].shape)
|