forked from mrq/DL-Art-School
121 lines
4.7 KiB
Python
121 lines
4.7 KiB
Python
|
from random import random
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
from models.audio.tts.unet_diffusion_tts7 import CheckpointedLayer
|
||
|
from models.lucidrains.x_transformers import Encoder
|
||
|
from trainer.networks import register_model
|
||
|
from utils.util import opt_get
|
||
|
|
||
|
|
||
|
class CheckpointedXTransformerEncoder(nn.Module):
|
||
|
"""
|
||
|
Wraps a ContinuousTransformerWrapper and applies CheckpointedLayer to each layer and permutes from channels-mid
|
||
|
to channels-last that XTransformer expects.
|
||
|
"""
|
||
|
def __init__(self, **xtransformer_kwargs):
|
||
|
super().__init__()
|
||
|
self.transformer = XTransformer(**xtransformer_kwargs)
|
||
|
|
||
|
for xform in [self.transformer.encoder, self.transformer.decoder.net]:
|
||
|
for i in range(len(xform.attn_layers.layers)):
|
||
|
n, b, r = xform.attn_layers.layers[i]
|
||
|
xform.attn_layers.layers[i] = nn.ModuleList([n, CheckpointedLayer(b), r])
|
||
|
|
||
|
def forward(self, *args, **kwargs):
|
||
|
return self.transformer(*args, **kwargs)
|
||
|
|
||
|
|
||
|
class CtcCodeGenerator(nn.Module):
|
||
|
def __init__(self, model_dim=512, layers=10, max_length=2048, dropout=.1, ctc_codes=256, max_pad=120, max_repeat=30):
|
||
|
super().__init__()
|
||
|
self.max_pad = max_pad
|
||
|
self.max_repeat = max_repeat
|
||
|
self.ctc_codes = ctc_codes
|
||
|
pred_codes = (max_pad+1)*(max_repeat+1)
|
||
|
|
||
|
self.position_embedding = nn.Embedding(max_length, model_dim)
|
||
|
self.codes_embedding = nn.Embedding(ctc_codes, model_dim)
|
||
|
self.recursive_embedding = nn.Embedding(pred_codes, model_dim)
|
||
|
self.mask_embedding = nn.Parameter(torch.randn(model_dim))
|
||
|
self.encoder = Encoder(
|
||
|
dim=model_dim,
|
||
|
depth=layers,
|
||
|
heads=model_dim//64,
|
||
|
ff_dropout=dropout,
|
||
|
attn_dropout=dropout,
|
||
|
use_rmsnorm=True,
|
||
|
ff_glu=True,
|
||
|
rotary_pos_emb=True,
|
||
|
)
|
||
|
self.pred_head = nn.Linear(model_dim, pred_codes)
|
||
|
self.confidence_head = nn.Linear(model_dim, 1)
|
||
|
|
||
|
def inference(self, codes, pads, repeats):
|
||
|
position_h = self.position_embedding(torch.arange(0, codes.shape[-1], device=codes.device))
|
||
|
codes_h = self.codes_embedding(codes)
|
||
|
|
||
|
labels = pads + repeats * self.max_pad
|
||
|
mask = labels == 0
|
||
|
recursive_h = self.recursive_embedding(labels)
|
||
|
recursive_h[mask] = self.mask_embedding
|
||
|
|
||
|
h = self.encoder(position_h + codes_h + recursive_h)
|
||
|
pred_logits = self.pred_head(h)
|
||
|
confidences = self.confidence_head(h).squeeze(-1)
|
||
|
confidences = F.softmax(confidences * mask, dim=-1)
|
||
|
return pred_logits, confidences
|
||
|
|
||
|
def forward(self, codes, pads, repeats, unpadded_lengths):
|
||
|
if unpadded_lengths is not None:
|
||
|
max_len = unpadded_lengths.max()
|
||
|
codes = codes[:, :max_len]
|
||
|
pads = pads[:, :max_len]
|
||
|
repeats = repeats[:, :max_len]
|
||
|
|
||
|
if pads.max() > self.max_pad:
|
||
|
print(f"Got unexpectedly long pads. Max: {pads.max()}, {pads}")
|
||
|
pads = torch.clip(pads, 0, self.max_pad)
|
||
|
if repeats.max() > self.max_repeat:
|
||
|
print(f"Got unexpectedly long repeats. Max: {repeats.max()}, {repeats}")
|
||
|
repeats = torch.clip(repeats, 0, self.max_repeat)
|
||
|
assert codes.max() < self.ctc_codes, codes.max()
|
||
|
|
||
|
labels = pads + repeats * self.max_pad
|
||
|
|
||
|
position_h = self.position_embedding(torch.arange(0, codes.shape[-1], device=codes.device))
|
||
|
codes_h = self.codes_embedding(codes)
|
||
|
recursive_h = self.recursive_embedding(labels)
|
||
|
|
||
|
mask_prob = random()
|
||
|
mask = torch.rand_like(labels.float()) > mask_prob
|
||
|
for b in range(codes.shape[0]):
|
||
|
mask[b, unpadded_lengths[b]:] = False
|
||
|
recursive_h[mask.logical_not()] = self.mask_embedding
|
||
|
|
||
|
h = self.encoder(position_h + codes_h + recursive_h)
|
||
|
pred_logits = self.pred_head(h)
|
||
|
loss = F.cross_entropy(pred_logits.permute(0,2,1), labels, reduce=False)
|
||
|
|
||
|
confidences = self.confidence_head(h).squeeze(-1)
|
||
|
confidences = F.softmax(confidences * mask, dim=-1)
|
||
|
confidence_loss = loss * confidences
|
||
|
loss = loss / loss.shape[-1] # This balances the confidence_loss and loss.
|
||
|
|
||
|
return loss.mean(), confidence_loss.mean()
|
||
|
|
||
|
|
||
|
@register_model
|
||
|
def register_ctc_code_generator(opt_net, opt):
|
||
|
return CtcCodeGenerator(**opt_get(opt_net, ['kwargs'], {}))
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
model = CtcCodeGenerator()
|
||
|
inps = torch.randint(0,36, (4, 300))
|
||
|
pads = torch.randint(0,100, (4,300))
|
||
|
repeats = torch.randint(0,20, (4,300))
|
||
|
loss = model(inps, pads, repeats)
|
||
|
print(loss.shape)
|