2020-12-25 05:50:14 +00:00
|
|
|
import importlib
|
2020-10-17 14:40:28 +00:00
|
|
|
import logging
|
2021-07-15 03:41:57 +00:00
|
|
|
import os
|
2020-12-25 05:50:14 +00:00
|
|
|
import pkgutil
|
|
|
|
import sys
|
2020-10-17 14:40:28 +00:00
|
|
|
from collections import OrderedDict
|
2021-03-03 03:51:48 +00:00
|
|
|
from inspect import isfunction, getmembers, signature
|
2019-08-23 13:42:47 +00:00
|
|
|
|
2020-08-26 00:14:45 +00:00
|
|
|
logger = logging.getLogger('base')
|
|
|
|
|
2020-12-25 05:50:14 +00:00
|
|
|
|
|
|
|
class RegisteredModelNameError(Exception):
|
|
|
|
def __init__(self, name_error):
|
|
|
|
super().__init__(f'Registered DLAS modules must start with `register_`. Incorrect registration: {name_error}')
|
|
|
|
|
|
|
|
|
|
|
|
# Decorator that allows API clients to show DLAS how to build a nn.Module from an opt dict.
|
|
|
|
# Functions with this decorator should have a specific naming format:
|
|
|
|
# `register_<name>` where <name> is the name that will be used in configuration files to reference this model.
|
|
|
|
# Functions with this decorator are expected to take a single argument:
|
|
|
|
# - opt: A dict with the configuration options for building the module.
|
|
|
|
# They should return:
|
|
|
|
# - A torch.nn.Module object for the model being defined.
|
|
|
|
def register_model(func):
|
|
|
|
if func.__name__.startswith("register_"):
|
|
|
|
func._dlas_model_name = func.__name__[9:]
|
|
|
|
assert func._dlas_model_name
|
2019-08-23 13:42:47 +00:00
|
|
|
else:
|
2020-12-25 05:50:14 +00:00
|
|
|
raise RegisteredModelNameError(func.__name__)
|
|
|
|
func._dlas_registered_model = True
|
|
|
|
return func
|
|
|
|
|
2023-02-17 19:20:19 +00:00
|
|
|
# this had some weird kludge that I don't understand needing to have a reference frame around the current working directory
|
|
|
|
# it works better when you set it relative to this file instead
|
|
|
|
# however, this has very different behavior when importing DLAS from outside the repo, rather than spawning a shell instance to a script within it
|
|
|
|
# I can't be assed to deal with that headache at the moment, I just want something to work right now without needing to touch a shell
|
|
|
|
|
|
|
|
# inject.py has a similar loader scheme, be sure to mirror it if you touch this too
|
2020-12-25 05:50:14 +00:00
|
|
|
def find_registered_model_fns(base_path='models'):
|
|
|
|
found_fns = {}
|
2023-02-17 02:03:00 +00:00
|
|
|
path = os.path.normpath(os.path.join(os.path.dirname(os.path.realpath(__file__)), f'../{base_path}'))
|
|
|
|
|
|
|
|
module_iter = pkgutil.walk_packages([path])
|
2020-12-25 05:50:14 +00:00
|
|
|
for mod in module_iter:
|
|
|
|
if mod.ispkg:
|
|
|
|
EXCLUSION_LIST = ['flownet2']
|
|
|
|
if mod.name not in EXCLUSION_LIST:
|
|
|
|
found_fns.update(find_registered_model_fns(f'{base_path}/{mod.name}'))
|
|
|
|
else:
|
|
|
|
mod_name = f'{base_path}/{mod.name}'.replace('/', '.')
|
|
|
|
importlib.import_module(mod_name)
|
|
|
|
for mod_fn in getmembers(sys.modules[mod_name], isfunction):
|
|
|
|
if hasattr(mod_fn[1], "_dlas_registered_model"):
|
|
|
|
found_fns[mod_fn[1]._dlas_model_name] = mod_fn[1]
|
|
|
|
return found_fns
|
|
|
|
|
|
|
|
|
|
|
|
class CreateModelError(Exception):
|
|
|
|
def __init__(self, name, available):
|
|
|
|
super().__init__(f'Could not find the specified model name: {name}. Tip: If your model is in a'
|
|
|
|
f' subdirectory, that directory must contain an __init__.py to be scanned. Available models:'
|
|
|
|
f'{available}')
|
|
|
|
|
|
|
|
|
2021-03-03 03:51:48 +00:00
|
|
|
def create_model(opt, opt_net, other_nets=None):
|
2020-12-25 05:50:14 +00:00
|
|
|
which_model = opt_net['which_model']
|
|
|
|
# For backwards compatibility.
|
|
|
|
if not which_model:
|
|
|
|
which_model = opt_net['which_model_G']
|
|
|
|
if not which_model:
|
|
|
|
which_model = opt_net['which_model_D']
|
|
|
|
registered_fns = find_registered_model_fns()
|
|
|
|
if which_model not in registered_fns.keys():
|
|
|
|
raise CreateModelError(which_model, list(registered_fns.keys()))
|
2021-03-03 03:51:48 +00:00
|
|
|
num_params = len(signature(registered_fns[which_model]).parameters)
|
|
|
|
if num_params == 2:
|
|
|
|
return registered_fns[which_model](opt_net, opt)
|
|
|
|
else:
|
2021-06-12 02:50:07 +00:00
|
|
|
return registered_fns[which_model](opt_net, opt, other_nets)
|