forked from mrq/DL-Art-School
81 lines
4.5 KiB
Python
81 lines
4.5 KiB
Python
|
import argparse
|
||
|
import os
|
||
|
import random
|
||
|
|
||
|
import torch
|
||
|
import torchaudio
|
||
|
import yaml
|
||
|
|
||
|
from data.audio.unsupervised_audio_dataset import load_audio
|
||
|
from data.util import is_audio_file, find_files_of_type
|
||
|
from models.tacotron2.text import text_to_sequence
|
||
|
from scripts.audio.gen.speech_synthesis_utils import do_spectrogram_diffusion, \
|
||
|
load_discrete_vocoder_diffuser, wav_to_mel, convert_mel_to_codes
|
||
|
from trainer.injectors.base_injectors import MelSpectrogramInjector
|
||
|
from utils.audio import plot_spectrogram
|
||
|
from utils.options import Loader
|
||
|
from utils.util import load_model_from_config
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
|
||
|
def do_vocoding(dvae, vocoder, diffuser, codes, cond=None, plot_spec=False):
|
||
|
return
|
||
|
|
||
|
|
||
|
def load_conditioning_candidates(path, num_conds, sample_rate=22050, cond_length=44100):
|
||
|
candidates = find_files_of_type('img', path, qualifier=is_audio_file)[0]
|
||
|
# Sample with replacement. This can get repeats, but more conveniently handles situations where there are not enough candidates.
|
||
|
related_mels = []
|
||
|
for k in range(num_conds):
|
||
|
rel_clip = load_audio(candidates[k], sample_rate)
|
||
|
gap = rel_clip.shape[-1] - cond_length
|
||
|
if gap < 0:
|
||
|
rel_clip = F.pad(rel_clip, pad=(0, abs(gap)))
|
||
|
elif gap > 0:
|
||
|
rand_start = random.randint(0, gap)
|
||
|
rel_clip = rel_clip[:, rand_start:rand_start + cond_length]
|
||
|
mel_clip = MelSpectrogramInjector({'in': 'wav', 'out': 'mel'},{})({'wav': rel_clip.unsqueeze(0)})['mel'].squeeze(0)
|
||
|
related_mels.append(mel_clip)
|
||
|
return torch.stack(related_mels, dim=0)
|
||
|
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument('-opt_diffuse', type=str, help='Path to options YAML file used to train the diffusion model', default='X:\\dlas\\experiments\\train_diffusion_vocoder_with_cond_new_dvae.yml')
|
||
|
parser.add_argument('-diffusion_model_name', type=str, help='Name of the diffusion model in opt.', default='generator')
|
||
|
parser.add_argument('-diffusion_model_path', type=str, help='Diffusion model checkpoint to load.', default='X:\\dlas\\experiments\\train_diffusion_vocoder_with_cond_new_dvae_full\\models\\6100_generator_ema.pth')
|
||
|
parser.add_argument('-dvae_model_name', type=str, help='Name of the DVAE model in opt.', default='dvae')
|
||
|
parser.add_argument('-opt_gpt_tts', type=str, help='Path to options YAML file used to train the GPT-TTS model', default='X:\\dlas\\experiments\\train_gpt_tts.yml')
|
||
|
parser.add_argument('-gpt_tts_model_name', type=str, help='Name of the GPT TTS model in opt.', default='gpt')
|
||
|
parser.add_argument('-gpt_tts_model_path', type=str, help='GPT TTS model checkpoint to load.', default='X:\\dlas\\experiments\\train_gpt_tts\\models\\22000_gpt.pth')
|
||
|
parser.add_argument('-text', type=str, help='Text to speak.', default="I'm a language model that has learned to speak.")
|
||
|
parser.add_argument('-cond_path', type=str, help='Folder containing conditioning samples.', default='Z:\\clips\\books1\\3042_18_Holden__000000000')
|
||
|
parser.add_argument('-num_cond', type=int, help='Number of conditioning samples to load.', default=3)
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
print("Loading GPT TTS..")
|
||
|
with open(args.opt_gpt_tts, mode='r') as f:
|
||
|
gpt_opt = yaml.load(f, Loader=Loader)
|
||
|
gpt_opt['networks'][args.gpt_tts_model_name]['kwargs']['checkpointing'] = False # Required for beam search
|
||
|
gpt = load_model_from_config(preloaded_options=gpt_opt, model_name=args.gpt_tts_model_name, also_load_savepoint=False, load_path=args.gpt_tts_model_path)
|
||
|
|
||
|
print("Loading data..")
|
||
|
text = torch.IntTensor(text_to_sequence(args.text, ['english_cleaners'])).unsqueeze(0).cuda()
|
||
|
conds = load_conditioning_candidates(args.cond_path, args.num_cond).unsqueeze(0).cuda()
|
||
|
|
||
|
print("Performing GPT inference..")
|
||
|
codes = gpt.inference(text, conds, num_beams=4) #TODO: check the text length during training and match that during inference.
|
||
|
|
||
|
# Delete the GPT TTS model to free up GPU memory
|
||
|
del gpt
|
||
|
|
||
|
print("Loading DVAE..")
|
||
|
dvae = load_model_from_config(args.opt_diffuse, args.dvae_model_name)
|
||
|
print("Loading Diffusion Model..")
|
||
|
diffusion = load_model_from_config(args.opt_diffuse, args.diffusion_model_name, also_load_savepoint=False, load_path=args.diffusion_model_path)
|
||
|
diffuser = load_discrete_vocoder_diffuser()
|
||
|
|
||
|
print("Performing vocoding..")
|
||
|
wav = do_spectrogram_diffusion(diffusion, dvae, diffuser, codes, conds[:, 0], spectrogram_compression_factor=128, plt_spec=True)
|
||
|
torchaudio.save('gpt_tts_output.wav', wav.squeeze(0), 10025)
|