DL-Art-School/codes/options/train/train_ESRGAN_blacked_xl.yml

88 lines
1.7 KiB
YAML
Raw Normal View History

#### general settings
name: blacked_fix_and_upconv_xl
use_tb_logger: true
model: srgan
distortion: sr
scale: 4
gpu_ids: [0]
amp_opt_level: O1
#### datasets
datasets:
train:
name: vixcloseup
mode: LQGT
dataroot_GT: K:\4k6k\4k_closeup\hr
dataroot_LQ: K:\4k6k\4k_closeup\lr_corrupted
doCrop: false
use_shuffle: true
n_workers: 12 # per GPU
batch_size: 24
target_size: 256
color: RGB
val:
name: adrianna_val
mode: LQGT
dataroot_GT: E:\4k6k\datasets\adrianna\val\hhq
dataroot_LQ: E:\4k6k\datasets\adrianna\val\hr
#### network structures
network_G:
which_model_G: RRDBNetXL
in_nc: 3
out_nc: 3
nf: 64
nblo: 18
nbmed: 8
nbhi: 6
network_D:
which_model_D: discriminator_resnet_passthrough
in_nc: 3
nf: 42
#### path
path:
#pretrain_model_G: ../experiments/blacked_fix_and_upconv_xl_part1/models/3000_G.pth
#pretrain_model_D: ~
strict_load: true
resume_state: ~
#### training settings: learning rate scheme, loss
train:
lr_G: !!float 2e-4
weight_decay_G: 0
beta1_G: 0.9
beta2_G: 0.99
lr_D: !!float 4e-4
weight_decay_D: 0
beta1_D: 0.9
beta2_D: 0.99
lr_scheme: MultiStepLR
niter: 400000
warmup_iter: -1 # no warm up
lr_steps: [20000, 40000, 50000, 60000]
lr_gamma: 0.5
mega_batch_factor: 3
pixel_criterion: l1
pixel_weight: !!float 1e-2
feature_criterion: l1
feature_weight: 1
feature_weight_decay: 1
feature_weight_decay_steps: 500
feature_weight_minimum: 1
gan_type: gan # gan | ragan
gan_weight: !!float 1e-2
D_update_ratio: 1
D_init_iters: -1
manual_seed: 10
val_freq: !!float 5e2
#### logger
logger:
print_freq: 50
save_checkpoint_freq: !!float 5e2