DL-Art-School/dlas/models/clip/cvvp.py

149 lines
5.1 KiB
Python
Raw Normal View History

2022-04-17 02:27:46 +00:00
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import einsum
2022-04-17 02:27:46 +00:00
import dlas.torch_intermediary as ml
from dlas.models.arch_util import AttentionBlock
from dlas.models.lucidrains.x_transformers import (
ContinuousTransformerWrapper, Encoder)
from dlas.trainer.networks import register_model
from dlas.utils.util import checkpoint, opt_get
2022-04-17 02:27:46 +00:00
def exists(val):
return val is not None
def masked_mean(t, mask):
t = t.masked_fill(~mask, 0.)
return t.sum(dim=1) / mask.sum(dim=1)
2022-04-17 02:27:46 +00:00
class CollapsingTransformer(nn.Module):
def __init__(self, model_dim, output_dims, heads, dropout, depth, mask_percentage=0, **encoder_kwargs):
super().__init__()
self.transformer = ContinuousTransformerWrapper(
max_seq_len=-1,
use_pos_emb=False,
attn_layers=Encoder(
dim=model_dim,
depth=depth,
heads=heads,
ff_dropout=dropout,
ff_mult=1,
attn_dropout=dropout,
use_rmsnorm=True,
ff_glu=True,
rotary_pos_emb=True,
**encoder_kwargs,
))
self.pre_combiner = nn.Sequential(nn.Conv1d(model_dim, output_dims, 1),
AttentionBlock(
output_dims, num_heads=heads, do_checkpoint=False),
2022-04-17 02:27:46 +00:00
nn.Conv1d(output_dims, output_dims, 1))
self.mask_percentage = mask_percentage
def forward(self, x, **transformer_kwargs):
h = self.transformer(x, **transformer_kwargs)
h = h.permute(0, 2, 1)
h = checkpoint(self.pre_combiner, h).permute(0, 2, 1)
2022-04-17 02:27:46 +00:00
if self.training:
mask = torch.rand_like(h.float()) > self.mask_percentage
else:
mask = torch.ones_like(h.float()).bool()
return masked_mean(h, mask)
class ConvFormatEmbedding(nn.Module):
def __init__(self, *args, **kwargs):
super().__init__()
2023-02-22 23:07:05 +00:00
# nn.Embedding
self.emb = ml.Embedding(*args, **kwargs)
2022-04-17 02:27:46 +00:00
def forward(self, x):
y = self.emb(x)
return y.permute(0, 2, 1)
2022-04-17 02:27:46 +00:00
class CVVP(nn.Module):
def __init__(
self,
model_dim=512,
transformer_heads=8,
dropout=.1,
conditioning_enc_depth=8,
cond_mask_percentage=0,
mel_channels=80,
mel_codes=None,
speech_enc_depth=8,
speech_mask_percentage=0,
latent_multiplier=1,
):
super().__init__()
latent_dim = latent_multiplier*model_dim
self.temperature = nn.Parameter(torch.tensor(1.))
self.cond_emb = nn.Sequential(nn.Conv1d(mel_channels, model_dim//2, kernel_size=5, stride=2, padding=2),
nn.Conv1d(model_dim//2, model_dim, kernel_size=3, stride=2, padding=1))
self.conditioning_transformer = CollapsingTransformer(
model_dim, model_dim, transformer_heads, dropout, conditioning_enc_depth, cond_mask_percentage)
self.to_conditioning_latent = ml.Linear(
latent_dim, latent_dim, bias=False)
2022-04-17 02:27:46 +00:00
if mel_codes is None:
self.speech_emb = nn.Conv1d(
mel_channels, model_dim, kernel_size=5, padding=2)
2022-04-17 02:27:46 +00:00
else:
self.speech_emb = ConvFormatEmbedding(mel_codes, model_dim)
self.speech_transformer = CollapsingTransformer(
model_dim, latent_dim, transformer_heads, dropout, speech_enc_depth, speech_mask_percentage)
self.to_speech_latent = ml.Linear(latent_dim, latent_dim, bias=False)
2022-04-17 02:27:46 +00:00
def get_grad_norm_parameter_groups(self):
return {
'conditioning': list(self.conditioning_transformer.parameters()),
'speech': list(self.speech_transformer.parameters()),
}
def forward(
self,
mel_input,
mel_cond,
return_loss=False
):
cond_emb = self.cond_emb(mel_cond).permute(0, 2, 1)
2022-04-17 02:27:46 +00:00
enc_cond = self.conditioning_transformer(cond_emb)
cond_latents = self.to_conditioning_latent(enc_cond)
speech_emb = self.speech_emb(mel_input).permute(0, 2, 1)
2022-04-17 02:27:46 +00:00
enc_speech = self.speech_transformer(speech_emb)
speech_latents = self.to_speech_latent(enc_speech)
cond_latents, speech_latents = map(lambda t: F.normalize(
t, p=2, dim=-1), (cond_latents, speech_latents))
2022-04-17 02:27:46 +00:00
temp = self.temperature.exp()
if not return_loss:
sim = einsum('n d, n d -> n', cond_latents, speech_latents) * temp
return sim
sim = einsum('i d, j d -> i j', cond_latents, speech_latents) * temp
labels = torch.arange(cond_latents.shape[0], device=mel_input.device)
loss = (F.cross_entropy(sim, labels) +
F.cross_entropy(sim.t(), labels)) / 2
2022-04-17 02:27:46 +00:00
return loss
@register_model
def register_cvvp(opt_net, opt):
return CVVP(**opt_get(opt_net, ['kwargs'], {}))
if __name__ == '__main__':
clvp = CVVP()
clvp(torch.randn(2, 80, 100),
torch.randn(2, 80, 95),
return_loss=True)