2023-03-21 15:39:28 +00:00
|
|
|
import numpy as np
|
2020-05-05 17:59:46 +00:00
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
2023-03-21 15:39:28 +00:00
|
|
|
__all__ = ['FixupResNet', 'fixup_resnet18', 'fixup_resnet34',
|
|
|
|
'fixup_resnet50', 'fixup_resnet101', 'fixup_resnet152']
|
2020-05-05 17:59:46 +00:00
|
|
|
|
|
|
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1):
|
|
|
|
"""3x3 convolution with padding"""
|
|
|
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
|
|
|
padding=1, bias=False)
|
|
|
|
|
2023-03-21 15:39:28 +00:00
|
|
|
|
2020-05-05 17:59:46 +00:00
|
|
|
def conv5x5(in_planes, out_planes, stride=1):
|
2020-05-24 13:43:23 +00:00
|
|
|
"""5x5 convolution with padding"""
|
2020-05-05 17:59:46 +00:00
|
|
|
return nn.Conv2d(in_planes, out_planes, kernel_size=5, stride=stride,
|
|
|
|
padding=2, bias=False)
|
|
|
|
|
2023-03-21 15:39:28 +00:00
|
|
|
|
2020-05-24 13:43:23 +00:00
|
|
|
def conv7x7(in_planes, out_planes, stride=1):
|
|
|
|
"""7x7 convolution with padding"""
|
|
|
|
return nn.Conv2d(in_planes, out_planes, kernel_size=7, stride=stride,
|
|
|
|
padding=3, bias=False)
|
|
|
|
|
2023-03-21 15:39:28 +00:00
|
|
|
|
2020-05-05 17:59:46 +00:00
|
|
|
def conv1x1(in_planes, out_planes, stride=1):
|
|
|
|
"""1x1 convolution"""
|
|
|
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
|
|
|
|
|
|
|
|
|
|
|
|
class FixupBasicBlock(nn.Module):
|
|
|
|
expansion = 1
|
|
|
|
|
|
|
|
def __init__(self, inplanes, planes, stride=1, downsample=None, conv_create=conv3x3):
|
|
|
|
super(FixupBasicBlock, self).__init__()
|
|
|
|
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
|
|
|
|
self.bias1a = nn.Parameter(torch.zeros(1))
|
|
|
|
self.conv1 = conv_create(inplanes, planes, stride)
|
|
|
|
self.bias1b = nn.Parameter(torch.zeros(1))
|
|
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
|
|
|
|
self.bias2a = nn.Parameter(torch.zeros(1))
|
|
|
|
self.conv2 = conv_create(planes, planes)
|
|
|
|
self.scale = nn.Parameter(torch.ones(1))
|
|
|
|
self.bias2b = nn.Parameter(torch.zeros(1))
|
|
|
|
self.downsample = downsample
|
|
|
|
self.stride = stride
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
identity = x
|
|
|
|
|
|
|
|
out = self.conv1(x + self.bias1a)
|
|
|
|
out = self.lrelu(out + self.bias1b)
|
|
|
|
|
|
|
|
out = self.conv2(out + self.bias2a)
|
|
|
|
out = out * self.scale + self.bias2b
|
|
|
|
|
|
|
|
if self.downsample is not None:
|
|
|
|
identity = self.downsample(x + self.bias1a)
|
|
|
|
|
|
|
|
out += identity
|
|
|
|
out = self.lrelu(out)
|
|
|
|
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
class FixupResNet(nn.Module):
|
|
|
|
|
2020-05-12 22:26:29 +00:00
|
|
|
def __init__(self, block, layers, upscale_applications=2, num_filters=64, inject_noise=False):
|
2020-05-05 17:59:46 +00:00
|
|
|
super(FixupResNet, self).__init__()
|
2020-05-13 15:22:06 +00:00
|
|
|
self.inject_noise = inject_noise
|
2023-03-21 15:39:28 +00:00
|
|
|
# The last layer is applied repeatedly to achieve high level SR.
|
|
|
|
self.num_layers = sum(layers) + layers[-1] * (upscale_applications - 1)
|
2020-05-05 17:59:46 +00:00
|
|
|
self.inplanes = num_filters
|
2020-05-10 16:48:37 +00:00
|
|
|
self.upscale_applications = upscale_applications
|
2020-05-05 17:59:46 +00:00
|
|
|
# Part 1 - Process raw input image. Most denoising should appear here and this should be the most complicated
|
|
|
|
# part of the block.
|
2020-05-13 15:22:06 +00:00
|
|
|
self.conv1 = nn.Conv2d(3, num_filters, kernel_size=5, stride=1, padding=2,
|
2020-05-05 17:59:46 +00:00
|
|
|
bias=False)
|
|
|
|
self.bias1 = nn.Parameter(torch.zeros(1))
|
|
|
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
|
|
|
self.layer1 = self._make_layer(block, num_filters, layers[0], stride=1)
|
2023-03-21 15:39:28 +00:00
|
|
|
self.skip1 = nn.Conv2d(num_filters, 3, kernel_size=5,
|
|
|
|
stride=1, padding=2, bias=False)
|
2020-05-05 17:59:46 +00:00
|
|
|
self.skip1_bias = nn.Parameter(torch.zeros(1))
|
|
|
|
|
|
|
|
# Part 2 - This is the upsampler core. It consists of a normal multiplicative conv followed by several residual
|
|
|
|
# convs which are intended to repair artifacts caused by 2x interpolation.
|
|
|
|
# This core layer should by itself accomplish 2x super-resolution. We use it in repeat to do the
|
|
|
|
# requested SR.
|
2020-05-12 16:09:02 +00:00
|
|
|
self.nf2 = int(num_filters/4)
|
2020-05-05 17:59:46 +00:00
|
|
|
# This part isn't repeated. It de-filters the output from the previous step to fit the filter size used in the
|
|
|
|
# upsampler-conv.
|
2023-03-21 15:39:28 +00:00
|
|
|
self.upsampler_conv = nn.Conv2d(
|
|
|
|
num_filters, self.nf2, kernel_size=3, stride=1, padding=1, bias=False)
|
2020-05-05 17:59:46 +00:00
|
|
|
self.uc_bias = nn.Parameter(torch.zeros(1))
|
2020-05-12 16:09:02 +00:00
|
|
|
self.inplanes = self.nf2
|
2020-05-05 17:59:46 +00:00
|
|
|
|
2020-05-12 16:09:02 +00:00
|
|
|
if layers[1] > 0:
|
|
|
|
# This is the repeated part.
|
2023-03-21 15:39:28 +00:00
|
|
|
self.layer2 = self._make_layer(block, int(
|
|
|
|
self.nf2), layers[1], stride=1, conv_type=conv5x5)
|
|
|
|
self.skip2 = nn.Conv2d(
|
|
|
|
self.nf2, 3, kernel_size=5, stride=1, padding=2, bias=False)
|
2020-05-12 16:09:02 +00:00
|
|
|
self.skip2_bias = nn.Parameter(torch.zeros(1))
|
2020-05-05 17:59:46 +00:00
|
|
|
|
2023-03-21 15:39:28 +00:00
|
|
|
self.final_defilter = nn.Conv2d(
|
|
|
|
self.nf2, 3, kernel_size=5, stride=1, padding=2, bias=True)
|
2020-05-05 17:59:46 +00:00
|
|
|
self.bias2 = nn.Parameter(torch.zeros(1))
|
|
|
|
|
|
|
|
for m in self.modules():
|
|
|
|
if isinstance(m, FixupBasicBlock):
|
2023-03-21 15:39:28 +00:00
|
|
|
nn.init.normal_(m.conv1.weight, mean=0, std=np.sqrt(
|
|
|
|
2 / (m.conv1.weight.shape[0] * np.prod(m.conv1.weight.shape[2:]))) * self.num_layers ** (-0.5))
|
2020-05-05 17:59:46 +00:00
|
|
|
nn.init.constant_(m.conv2.weight, 0)
|
|
|
|
if m.downsample is not None:
|
2023-03-21 15:39:28 +00:00
|
|
|
nn.init.normal_(m.downsample.weight, mean=0, std=np.sqrt(
|
|
|
|
2 / (m.downsample.weight.shape[0] * np.prod(m.downsample.weight.shape[2:]))))
|
2020-05-05 17:59:46 +00:00
|
|
|
|
|
|
|
def _make_layer(self, block, planes, blocks, stride=1, conv_type=conv3x3):
|
|
|
|
defilter = None
|
|
|
|
if self.inplanes != planes * block.expansion:
|
|
|
|
defilter = conv1x1(self.inplanes, planes * block.expansion, stride)
|
|
|
|
|
|
|
|
layers = []
|
|
|
|
layers.append(block(self.inplanes, planes, stride, defilter))
|
|
|
|
self.inplanes = planes * block.expansion
|
|
|
|
for _ in range(1, blocks):
|
|
|
|
layers.append(block(self.inplanes, planes, conv_create=conv_type))
|
|
|
|
|
|
|
|
return nn.Sequential(*layers)
|
|
|
|
|
|
|
|
def forward(self, x):
|
2020-05-12 22:26:29 +00:00
|
|
|
if self.inject_noise:
|
2020-05-13 15:22:06 +00:00
|
|
|
rand_feature = torch.randn_like(x)
|
|
|
|
x = x + rand_feature * .1
|
2020-05-05 17:59:46 +00:00
|
|
|
x = self.conv1(x)
|
|
|
|
x = self.lrelu(x + self.bias1)
|
|
|
|
x = self.layer1(x)
|
|
|
|
skip_lo = self.skip1(x) + self.skip1_bias
|
|
|
|
|
|
|
|
x = self.lrelu(self.upsampler_conv(x) + self.uc_bias)
|
2020-05-12 16:09:02 +00:00
|
|
|
if self.upscale_applications > 0:
|
|
|
|
x = F.interpolate(x, scale_factor=2.0, mode='nearest')
|
|
|
|
x = self.layer2(x)
|
|
|
|
skip_med = self.skip2(x) + self.skip2_bias
|
|
|
|
else:
|
|
|
|
skip_med = skip_lo
|
2020-05-10 16:48:37 +00:00
|
|
|
|
|
|
|
if self.upscale_applications > 1:
|
|
|
|
x = F.interpolate(x, scale_factor=2.0, mode='nearest')
|
|
|
|
x = self.layer2(x)
|
|
|
|
|
2020-05-05 17:59:46 +00:00
|
|
|
x = self.final_defilter(x) + self.bias2
|
|
|
|
return x, skip_med, skip_lo
|
|
|
|
|
2023-03-21 15:39:28 +00:00
|
|
|
|
2020-05-12 16:09:02 +00:00
|
|
|
class FixupResNetV2(FixupResNet):
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
super(FixupResNetV2, self).__init__(**kwargs)
|
|
|
|
# Use one unified filter-to-image stack, not the previous skip stacks.
|
|
|
|
self.skip1 = None
|
|
|
|
self.skip1_bias = None
|
|
|
|
self.skip2 = None
|
|
|
|
self.skip2_bias = None
|
|
|
|
# The new filter-to-image stack will be 2 conv layers deep, not 1.
|
2023-03-21 15:39:28 +00:00
|
|
|
self.final_process = nn.Conv2d(
|
|
|
|
self.nf2, self.nf2, kernel_size=5, stride=1, padding=2, bias=True)
|
2020-05-12 16:09:02 +00:00
|
|
|
self.bias2 = nn.Parameter(torch.zeros(1))
|
|
|
|
self.fp_bn = nn.BatchNorm2d(self.nf2)
|
2023-03-21 15:39:28 +00:00
|
|
|
self.final_defilter = nn.Conv2d(
|
|
|
|
self.nf2, 3, kernel_size=3, stride=1, padding=1, bias=True)
|
2020-05-12 16:09:02 +00:00
|
|
|
self.bias3 = nn.Parameter(torch.zeros(1))
|
|
|
|
|
|
|
|
def filter_to_image(self, filter):
|
|
|
|
x = self.final_process(filter) + self.bias2
|
|
|
|
x = self.lrelu(self.fp_bn(x))
|
|
|
|
x = self.final_defilter(x) + self.bias3
|
|
|
|
return x
|
|
|
|
|
|
|
|
def forward(self, x):
|
2020-05-12 22:26:29 +00:00
|
|
|
if self.inject_noise:
|
2020-05-13 21:26:55 +00:00
|
|
|
rand_feature = torch.randn_like(x)
|
|
|
|
x = x + rand_feature * .1
|
2020-05-12 16:09:02 +00:00
|
|
|
x = self.conv1(x)
|
|
|
|
x = self.lrelu(x + self.bias1)
|
|
|
|
x = self.layer1(x)
|
|
|
|
x = self.lrelu(self.upsampler_conv(x) + self.uc_bias)
|
|
|
|
|
|
|
|
skip_lo = self.filter_to_image(x)
|
|
|
|
if self.upscale_applications > 0:
|
|
|
|
x = F.interpolate(x, scale_factor=2.0, mode='nearest')
|
|
|
|
x = self.layer2(x)
|
|
|
|
|
2020-05-15 19:50:49 +00:00
|
|
|
skip_med = self.filter_to_image(x)
|
2020-05-12 16:09:02 +00:00
|
|
|
if self.upscale_applications > 1:
|
|
|
|
x = F.interpolate(x, scale_factor=2.0, mode='nearest')
|
|
|
|
x = self.layer2(x)
|
|
|
|
|
2020-05-15 19:50:49 +00:00
|
|
|
if self.upscale_applications == 2:
|
|
|
|
x = self.filter_to_image(x)
|
|
|
|
elif self.upscale_applications == 1:
|
|
|
|
x = skip_med
|
|
|
|
skip_med = skip_lo
|
|
|
|
skip_lo = None
|
|
|
|
elif self.upscale_applications == 0:
|
|
|
|
x = skip_lo
|
|
|
|
skip_lo = None
|
|
|
|
skip_med = None
|
|
|
|
|
2020-05-12 16:09:02 +00:00
|
|
|
return x, skip_med, skip_lo
|
|
|
|
|
2023-03-21 15:39:28 +00:00
|
|
|
|
2020-05-06 23:25:25 +00:00
|
|
|
def fixup_resnet34(nb_denoiser=20, nb_upsampler=10, **kwargs):
|
2020-05-05 17:59:46 +00:00
|
|
|
"""Constructs a Fixup-ResNet-34 model.
|
|
|
|
"""
|
2020-05-06 23:25:25 +00:00
|
|
|
model = FixupResNet(FixupBasicBlock, [nb_denoiser, nb_upsampler], **kwargs)
|
2020-05-05 17:59:46 +00:00
|
|
|
return model
|
|
|
|
|
2023-03-21 15:39:28 +00:00
|
|
|
|
2020-05-12 16:09:02 +00:00
|
|
|
def fixup_resnet34_v2(nb_denoiser=20, nb_upsampler=10, **kwargs):
|
|
|
|
"""Constructs a Fixup-ResNet-34 model.
|
|
|
|
"""
|
|
|
|
kwargs['block'] = FixupBasicBlock
|
|
|
|
kwargs['layers'] = [nb_denoiser, nb_upsampler]
|
|
|
|
model = FixupResNetV2(**kwargs)
|
|
|
|
return model
|
|
|
|
|
2020-05-05 17:59:46 +00:00
|
|
|
|
2023-03-21 15:39:28 +00:00
|
|
|
__all__ = ['FixupResNet', 'fixup_resnet34', 'fixup_resnet34_v2']
|