DL-Art-School/dlas/scripts/diffusion/diffusion_correction_surfer.py

104 lines
3.4 KiB
Python
Raw Normal View History

import argparse
import logging
import os
import os.path as osp
import random
import time
from collections import OrderedDict
import numpy
import numpy as np
import torch
from PIL import Image
from torchvision.transforms import ToTensor
from tqdm import tqdm
import dlas.utils
import dlas.utils.options as option
import dlas.utils.util as util
from dlas.data import create_dataloader, create_dataset
from dlas.trainer.ExtensibleTrainer import ExtensibleTrainer
# A rough copy of test.py that "surfs" along a spectrum of correction factors for a single image.
def forward_pass(model, data, output_dir, jc, bc):
with torch.no_grad():
model.feed_data(data, 0)
model.test()
visuals = model.get_current_visuals()['rlt'].cpu()
img_path = data['GT_path'][0]
img_name = osp.splitext(osp.basename(img_path))[0]
sr_img = util.tensor2img(visuals[0]) # uint8
# save images
suffixes = [f'_blur_{int(bc*1000)}_{int(jc*1000)}',
f'_jpeg_{int(jc*1000)}_{int(bc*1000)}']
for suffix in suffixes:
save_img_path = osp.join(output_dir, img_name + suffix + '.png')
util.save_img(sr_img, save_img_path)
if __name__ == "__main__":
# Set seeds
torch.manual_seed(5555)
random.seed(5555)
np.random.seed(5555)
# options
torch.backends.cudnn.benchmark = True
want_metrics = False
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to options YAML file.',
default='../options/test_diffusion_unet.yml')
opt = option.parse(parser.parse_args().opt, is_train=False)
opt = option.dict_to_nonedict(opt)
utils.util.loaded_options = opt
util.mkdirs(
(path for key, path in opt['path'].items()
if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key))
util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO,
screen=True, tofile=True)
logger = logging.getLogger('base')
logger.info(option.dict2str(opt))
# Load test image
im = ToTensor()(Image.open(opt['image'])) * 2 - 1
_, h, w = im.shape
if h % 2 == 1:
im = im[:, 1:, :]
h = h-1
if w % 2 == 1:
im = im[:, :, 1:]
w = w-1
dh, dw = (h - 32 * (h // 32)) // 2, (w - 32 * (w // 32)) // 2
if dh > 0:
im = im[:, dh:-dh]
if dw > 0:
im = im[:, :, dw:-dw]
2021-06-21 16:38:07 +00:00
im = im[:3].unsqueeze(0)
# Build the corruption indexes we are going to use.
jpegs = list(numpy.arange(opt['min_jpeg_correction'],
opt['max_jpeg_correction'], opt['jpeg_correction_step_size']))
deblurs = list(numpy.arange(
opt['min_blur_correction'], opt['max_blur_correction'], opt['blur_correction_step_size']))
model = ExtensibleTrainer(opt)
results_dir = osp.join(opt['path']['results_root'],
os.path.basename(opt['image']))
util.mkdir(results_dir)
for jpeg_correction in jpegs:
for blur_correction in deblurs:
data = {
'hq': im.to('cuda'),
2021-07-06 15:36:52 +00:00
'lq': im.to('cuda'),
'corruption_entropy': torch.tensor([[jpeg_correction, blur_correction]], device='cuda',
dtype=torch.float),
'GT_path': opt['image']
}
forward_pass(model, data, results_dir,
jpeg_correction, blur_correction)