forked from mrq/DL-Art-School
223 lines
9.2 KiB
Python
223 lines
9.2 KiB
Python
|
""" refer from https://github.com/zceng/LVCNet """
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
|
||
|
class KernelPredictor(torch.nn.Module):
|
||
|
''' Kernel predictor for the location-variable convolutions'''
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
cond_channels,
|
||
|
conv_in_channels,
|
||
|
conv_out_channels,
|
||
|
conv_layers,
|
||
|
conv_kernel_size=3,
|
||
|
kpnet_hidden_channels=64,
|
||
|
kpnet_conv_size=3,
|
||
|
kpnet_dropout=0.0,
|
||
|
kpnet_nonlinear_activation="LeakyReLU",
|
||
|
kpnet_nonlinear_activation_params={"negative_slope": 0.1},
|
||
|
):
|
||
|
'''
|
||
|
Args:
|
||
|
cond_channels (int): number of channel for the conditioning sequence,
|
||
|
conv_in_channels (int): number of channel for the input sequence,
|
||
|
conv_out_channels (int): number of channel for the output sequence,
|
||
|
conv_layers (int): number of layers
|
||
|
'''
|
||
|
super().__init__()
|
||
|
|
||
|
self.conv_in_channels = conv_in_channels
|
||
|
self.conv_out_channels = conv_out_channels
|
||
|
self.conv_kernel_size = conv_kernel_size
|
||
|
self.conv_layers = conv_layers
|
||
|
|
||
|
kpnet_kernel_channels = conv_in_channels * conv_out_channels * conv_kernel_size * conv_layers # l_w
|
||
|
kpnet_bias_channels = conv_out_channels * conv_layers # l_b
|
||
|
|
||
|
self.input_conv = nn.Sequential(
|
||
|
nn.utils.weight_norm(nn.Conv1d(cond_channels, kpnet_hidden_channels, 5, padding=2, bias=True)),
|
||
|
getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
|
||
|
)
|
||
|
|
||
|
self.residual_convs = nn.ModuleList()
|
||
|
padding = (kpnet_conv_size - 1) // 2
|
||
|
for _ in range(3):
|
||
|
self.residual_convs.append(
|
||
|
nn.Sequential(
|
||
|
nn.Dropout(kpnet_dropout),
|
||
|
nn.utils.weight_norm(
|
||
|
nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding,
|
||
|
bias=True)),
|
||
|
getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
|
||
|
nn.utils.weight_norm(
|
||
|
nn.Conv1d(kpnet_hidden_channels, kpnet_hidden_channels, kpnet_conv_size, padding=padding,
|
||
|
bias=True)),
|
||
|
getattr(nn, kpnet_nonlinear_activation)(**kpnet_nonlinear_activation_params),
|
||
|
)
|
||
|
)
|
||
|
self.kernel_conv = nn.utils.weight_norm(
|
||
|
nn.Conv1d(kpnet_hidden_channels, kpnet_kernel_channels, kpnet_conv_size, padding=padding, bias=True))
|
||
|
self.bias_conv = nn.utils.weight_norm(
|
||
|
nn.Conv1d(kpnet_hidden_channels, kpnet_bias_channels, kpnet_conv_size, padding=padding, bias=True))
|
||
|
|
||
|
def forward(self, c):
|
||
|
'''
|
||
|
Args:
|
||
|
c (Tensor): the conditioning sequence (batch, cond_channels, cond_length)
|
||
|
'''
|
||
|
batch, _, cond_length = c.shape
|
||
|
c = self.input_conv(c)
|
||
|
for residual_conv in self.residual_convs:
|
||
|
residual_conv.to(c.device)
|
||
|
c = c + residual_conv(c)
|
||
|
k = self.kernel_conv(c)
|
||
|
b = self.bias_conv(c)
|
||
|
kernels = k.contiguous().view(
|
||
|
batch,
|
||
|
self.conv_layers,
|
||
|
self.conv_in_channels,
|
||
|
self.conv_out_channels,
|
||
|
self.conv_kernel_size,
|
||
|
cond_length,
|
||
|
)
|
||
|
bias = b.contiguous().view(
|
||
|
batch,
|
||
|
self.conv_layers,
|
||
|
self.conv_out_channels,
|
||
|
cond_length,
|
||
|
)
|
||
|
|
||
|
return kernels, bias
|
||
|
|
||
|
def remove_weight_norm(self):
|
||
|
nn.utils.remove_weight_norm(self.input_conv[0])
|
||
|
nn.utils.remove_weight_norm(self.kernel_conv)
|
||
|
nn.utils.remove_weight_norm(self.bias_conv)
|
||
|
for block in self.residual_convs:
|
||
|
nn.utils.remove_weight_norm(block[1])
|
||
|
nn.utils.remove_weight_norm(block[3])
|
||
|
|
||
|
|
||
|
class LVCBlock(torch.nn.Module):
|
||
|
'''the location-variable convolutions'''
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels,
|
||
|
cond_channels,
|
||
|
stride,
|
||
|
dilations=[1, 3, 9, 27],
|
||
|
lReLU_slope=0.2,
|
||
|
conv_kernel_size=3,
|
||
|
cond_hop_length=256,
|
||
|
kpnet_hidden_channels=64,
|
||
|
kpnet_conv_size=3,
|
||
|
kpnet_dropout=0.0,
|
||
|
):
|
||
|
super().__init__()
|
||
|
|
||
|
self.cond_hop_length = cond_hop_length
|
||
|
self.conv_layers = len(dilations)
|
||
|
self.conv_kernel_size = conv_kernel_size
|
||
|
|
||
|
self.kernel_predictor = KernelPredictor(
|
||
|
cond_channels=cond_channels,
|
||
|
conv_in_channels=in_channels,
|
||
|
conv_out_channels=2 * in_channels,
|
||
|
conv_layers=len(dilations),
|
||
|
conv_kernel_size=conv_kernel_size,
|
||
|
kpnet_hidden_channels=kpnet_hidden_channels,
|
||
|
kpnet_conv_size=kpnet_conv_size,
|
||
|
kpnet_dropout=kpnet_dropout,
|
||
|
kpnet_nonlinear_activation_params={"negative_slope": lReLU_slope}
|
||
|
)
|
||
|
|
||
|
self.convt_pre = nn.Sequential(
|
||
|
nn.LeakyReLU(lReLU_slope),
|
||
|
nn.utils.weight_norm(nn.ConvTranspose1d(in_channels, in_channels, 2 * stride, stride=stride,
|
||
|
padding=stride // 2 + stride % 2, output_padding=stride % 2)),
|
||
|
)
|
||
|
|
||
|
self.conv_blocks = nn.ModuleList()
|
||
|
for dilation in dilations:
|
||
|
self.conv_blocks.append(
|
||
|
nn.Sequential(
|
||
|
nn.LeakyReLU(lReLU_slope),
|
||
|
nn.utils.weight_norm(nn.Conv1d(in_channels, in_channels, conv_kernel_size,
|
||
|
padding=dilation * (conv_kernel_size - 1) // 2, dilation=dilation)),
|
||
|
nn.LeakyReLU(lReLU_slope),
|
||
|
)
|
||
|
)
|
||
|
|
||
|
def forward(self, x, c):
|
||
|
''' forward propagation of the location-variable convolutions.
|
||
|
Args:
|
||
|
x (Tensor): the input sequence (batch, in_channels, in_length)
|
||
|
c (Tensor): the conditioning sequence (batch, cond_channels, cond_length)
|
||
|
|
||
|
Returns:
|
||
|
Tensor: the output sequence (batch, in_channels, in_length)
|
||
|
'''
|
||
|
_, in_channels, _ = x.shape # (B, c_g, L')
|
||
|
|
||
|
x = self.convt_pre(x) # (B, c_g, stride * L')
|
||
|
kernels, bias = self.kernel_predictor(c)
|
||
|
|
||
|
for i, conv in enumerate(self.conv_blocks):
|
||
|
output = conv(x) # (B, c_g, stride * L')
|
||
|
|
||
|
k = kernels[:, i, :, :, :, :] # (B, 2 * c_g, c_g, kernel_size, cond_length)
|
||
|
b = bias[:, i, :, :] # (B, 2 * c_g, cond_length)
|
||
|
|
||
|
output = self.location_variable_convolution(output, k, b,
|
||
|
hop_size=self.cond_hop_length) # (B, 2 * c_g, stride * L'): LVC
|
||
|
x = x + torch.sigmoid(output[:, :in_channels, :]) * torch.tanh(
|
||
|
output[:, in_channels:, :]) # (B, c_g, stride * L'): GAU
|
||
|
|
||
|
return x
|
||
|
|
||
|
def location_variable_convolution(self, x, kernel, bias, dilation=1, hop_size=256):
|
||
|
''' perform location-variable convolution operation on the input sequence (x) using the local convolution kernl.
|
||
|
Time: 414 μs ± 309 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each), test on NVIDIA V100.
|
||
|
Args:
|
||
|
x (Tensor): the input sequence (batch, in_channels, in_length).
|
||
|
kernel (Tensor): the local convolution kernel (batch, in_channel, out_channels, kernel_size, kernel_length)
|
||
|
bias (Tensor): the bias for the local convolution (batch, out_channels, kernel_length)
|
||
|
dilation (int): the dilation of convolution.
|
||
|
hop_size (int): the hop_size of the conditioning sequence.
|
||
|
Returns:
|
||
|
(Tensor): the output sequence after performing local convolution. (batch, out_channels, in_length).
|
||
|
'''
|
||
|
batch, _, in_length = x.shape
|
||
|
batch, _, out_channels, kernel_size, kernel_length = kernel.shape
|
||
|
assert in_length == (kernel_length * hop_size), "length of (x, kernel) is not matched"
|
||
|
|
||
|
padding = dilation * int((kernel_size - 1) / 2)
|
||
|
x = F.pad(x, (padding, padding), 'constant', 0) # (batch, in_channels, in_length + 2*padding)
|
||
|
x = x.unfold(2, hop_size + 2 * padding, hop_size) # (batch, in_channels, kernel_length, hop_size + 2*padding)
|
||
|
|
||
|
if hop_size < dilation:
|
||
|
x = F.pad(x, (0, dilation), 'constant', 0)
|
||
|
x = x.unfold(3, dilation,
|
||
|
dilation) # (batch, in_channels, kernel_length, (hop_size + 2*padding)/dilation, dilation)
|
||
|
x = x[:, :, :, :, :hop_size]
|
||
|
x = x.transpose(3, 4) # (batch, in_channels, kernel_length, dilation, (hop_size + 2*padding)/dilation)
|
||
|
x = x.unfold(4, kernel_size, 1) # (batch, in_channels, kernel_length, dilation, _, kernel_size)
|
||
|
|
||
|
o = torch.einsum('bildsk,biokl->bolsd', x, kernel)
|
||
|
o = o.to(memory_format=torch.channels_last_3d)
|
||
|
bias = bias.unsqueeze(-1).unsqueeze(-1).to(memory_format=torch.channels_last_3d)
|
||
|
o = o + bias
|
||
|
o = o.contiguous().view(batch, out_channels, -1)
|
||
|
|
||
|
return o
|
||
|
|
||
|
def remove_weight_norm(self):
|
||
|
self.kernel_predictor.remove_weight_norm()
|
||
|
nn.utils.remove_weight_norm(self.convt_pre[1])
|
||
|
for block in self.conv_blocks:
|
||
|
nn.utils.remove_weight_norm(block[1])
|