forked from mrq/DL-Art-School
34 lines
1.4 KiB
Python
34 lines
1.4 KiB
Python
|
import argparse
|
||
|
|
||
|
import torch
|
||
|
import yaml
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
from data import create_dataset, create_dataloader
|
||
|
from trainer.injectors.base_injectors import TorchMelSpectrogramInjector
|
||
|
from utils.options import Loader
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument('-opt', type=str, help='Path to options YAML file used to train the diffusion model', default='D:\\dlas\\options\\train_dvae_audio_clips.yml')
|
||
|
parser.add_argument('-key', type=str, help='Key where audio data is stored', default='clip')
|
||
|
parser.add_argument('-num_batches', type=str, help='Number of batches to collect to compute the norm', default=10)
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
with open(args.opt, mode='r') as f:
|
||
|
opt = yaml.load(f, Loader=Loader)
|
||
|
dopt = opt['datasets']['train']
|
||
|
dopt['phase'] = 'train'
|
||
|
dataset, collate = create_dataset(dopt, return_collate=True)
|
||
|
dataloader = create_dataloader(dataset, dopt, collate_fn=collate, shuffle=True)
|
||
|
inj = TorchMelSpectrogramInjector({'in': 'wav', 'out': 'mel'},{}).cuda()
|
||
|
|
||
|
mels = []
|
||
|
for batch in tqdm(dataloader):
|
||
|
clip = batch[args.key].cuda()
|
||
|
mel = inj({'wav': clip})['mel']
|
||
|
mels.append(mel.mean((0,2)).cpu())
|
||
|
if len(mels) > args.num_batches:
|
||
|
break
|
||
|
mel_norms = torch.stack(mels).mean(0)
|
||
|
torch.save('mel_norms.pth', mel_norms)
|