DL-Art-School/codes/data/audio/nv_tacotron_dataset.py

191 lines
7.6 KiB
Python
Raw Normal View History

import os
import random
import audio2numpy
import numpy as np
import torch
import torch.utils.data
2021-07-28 02:33:30 +00:00
from tqdm import tqdm
import models.tacotron2.layers as layers
from models.tacotron2.taco_utils import load_wav_to_torch, load_filepaths_and_text
from models.tacotron2.text import text_to_sequence
2021-07-28 02:33:30 +00:00
from utils.util import opt_get
def load_mozilla_cv(filename):
with open(filename, encoding='utf-8') as f:
components = [line.strip().split('\t') for line in f][1:] # First line is the header
filepaths_and_text = [[f'clips/{component[1]}', component[2]] for component in components]
return filepaths_and_text
class TextMelLoader(torch.utils.data.Dataset):
"""
1) loads audio,text pairs
2) normalizes text and converts them to sequences of one-hot vectors
3) computes mel-spectrograms from audio files.
"""
def __init__(self, hparams):
self.path = os.path.dirname(hparams['path'])
fetcher_mode = opt_get(hparams, ['fetcher_mode'], 'lj')
fetcher_fn = None
if fetcher_mode == 'lj':
fetcher_fn = load_filepaths_and_text
elif fetcher_mode == 'mozilla_cv':
fetcher_fn = load_mozilla_cv
else:
raise NotImplementedError()
self.audiopaths_and_text = fetcher_fn(hparams['path'])
self.text_cleaners = hparams.text_cleaners
self.max_wav_value = hparams.max_wav_value
self.max_mel_len = opt_get(hparams, ['max_mel_length'], None)
self.sampling_rate = hparams.sampling_rate
self.load_mel_from_disk = hparams.load_mel_from_disk
2021-07-28 02:33:30 +00:00
self.return_wavs = opt_get(hparams, ['return_wavs'], False)
self.input_sample_rate = opt_get(hparams, ['input_sample_rate'], self.sampling_rate)
assert not (self.load_mel_from_disk and self.return_wavs)
self.stft = layers.TacotronSTFT(
hparams.filter_length, hparams.hop_length, hparams.win_length,
hparams.n_mel_channels, hparams.sampling_rate, hparams.mel_fmin,
hparams.mel_fmax)
random.seed(hparams.seed)
random.shuffle(self.audiopaths_and_text)
def get_mel_text_pair(self, audiopath_and_text):
# separate filename and text
audiopath, text = audiopath_and_text[0], audiopath_and_text[1]
audiopath = os.path.join(self.path, audiopath)
text = self.get_text(text)
mel = self.get_mel(audiopath)
return (text, mel, audiopath_and_text[0])
def get_mel(self, filename):
if not self.load_mel_from_disk:
if filename.endswith('.wav'):
audio, sampling_rate = load_wav_to_torch(filename)
audio = audio / self.max_wav_value
else:
audio, sampling_rate = audio2numpy.audio_from_file(filename)
audio = torch.tensor(audio)
if sampling_rate != self.input_sample_rate:
if sampling_rate < self.input_sample_rate:
print(f'{filename} has a sample rate of {sampling_rate} which is lower than the requested sample rate of {self.input_sample_rate}. This is not a good idea.')
audio = torch.nn.functional.interpolate(audio.unsqueeze(0).unsqueeze(1), scale_factor=self.input_sample_rate/sampling_rate, mode='area')#
audio = (audio.squeeze().clip(-1,1)+1)/2
audio_norm = audio.unsqueeze(0)
audio_norm = torch.autograd.Variable(audio_norm, requires_grad=False)
if self.input_sample_rate != self.sampling_rate:
ratio = self.sampling_rate / self.input_sample_rate
audio_norm = torch.nn.functional.interpolate(audio_norm.unsqueeze(0), scale_factor=ratio, mode='area').squeeze(0)
if self.return_wavs:
melspec = audio_norm
else:
melspec = self.stft.mel_spectrogram(audio_norm)
melspec = torch.squeeze(melspec, 0)
else:
melspec = torch.from_numpy(np.load(filename))
assert melspec.size(0) == self.stft.n_mel_channels, (
'Mel dimension mismatch: given {}, expected {}'.format(
melspec.size(0), self.stft.n_mel_channels))
return melspec
def get_text(self, text):
text_norm = torch.IntTensor(text_to_sequence(text, self.text_cleaners))
return text_norm
def __getitem__(self, index):
t, m, p = self.get_mel_text_pair(self.audiopaths_and_text[index])
if self.max_mel_len != None and m.shape[-1] > self.max_mel_len:
# It's hard to handle this situation properly. Best bet is to return the a random valid token and skew the dataset somewhat as a result.
rv = random.randint(0,len(self))
return self[rv]
return t, m, p
def __len__(self):
return len(self.audiopaths_and_text)
class TextMelCollate():
""" Zero-pads model inputs and targets based on number of frames per setep
"""
def __init__(self, n_frames_per_step):
self.n_frames_per_step = n_frames_per_step
def __call__(self, batch):
"""Collate's training batch from normalized text and mel-spectrogram
PARAMS
------
batch: [text_normalized, mel_normalized, filename]
"""
# Right zero-pad all one-hot text sequences to max input length
input_lengths, ids_sorted_decreasing = torch.sort(
torch.LongTensor([len(x[0]) for x in batch]),
dim=0, descending=True)
max_input_len = input_lengths[0]
text_padded = torch.LongTensor(len(batch), max_input_len)
text_padded.zero_()
filenames = []
for i in range(len(ids_sorted_decreasing)):
text = batch[ids_sorted_decreasing[i]][0]
text_padded[i, :text.size(0)] = text
filenames.append(batch[ids_sorted_decreasing[i]][2])
# Right zero-pad mel-spec
num_mels = batch[0][1].size(0)
max_target_len = max([x[1].size(1) for x in batch])
if max_target_len % self.n_frames_per_step != 0:
max_target_len += self.n_frames_per_step - max_target_len % self.n_frames_per_step
assert max_target_len % self.n_frames_per_step == 0
# include mel padded and gate padded
mel_padded = torch.FloatTensor(len(batch), num_mels, max_target_len)
mel_padded.zero_()
gate_padded = torch.FloatTensor(len(batch), max_target_len)
gate_padded.zero_()
output_lengths = torch.LongTensor(len(batch))
for i in range(len(ids_sorted_decreasing)):
mel = batch[ids_sorted_decreasing[i]][1]
mel_padded[i, :, :mel.size(1)] = mel
gate_padded[i, mel.size(1)-1:] = 1
output_lengths[i] = mel.size(1)
2021-07-09 04:13:44 +00:00
return {
'padded_text': text_padded,
'input_lengths': input_lengths,
'padded_mel': mel_padded,
'padded_gate': gate_padded,
'output_lengths': output_lengths,
'filenames': filenames
2021-07-09 04:13:44 +00:00
}
if __name__ == '__main__':
params = {
'mode': 'nv_tacotron',
'path': 'E:\\audio\\MozillaCommonVoice\\en\\test.tsv',
'phase': 'train',
'n_workers': 0,
2021-08-06 18:03:46 +00:00
'batch_size': 32,
'fetcher_mode': 'mozilla_cv',
2021-07-28 02:33:30 +00:00
#'return_wavs': True,
#'input_sample_rate': 22050,
#'sampling_rate': 8000
}
from data import create_dataset, create_dataloader
ds, c = create_dataset(params, return_collate=True)
dl = create_dataloader(ds, params, collate_fn=c)
i = 0
2021-08-06 18:03:46 +00:00
m = None
for i, b in tqdm(enumerate(dl)):
pm = b['padded_mel']
pm = torch.nn.functional.pad(pm, (0, 800-pm.shape[-1]))
m = pm if m is None else torch.cat([m, pm], dim=0)
print(m.mean(), m.std())