forked from mrq/DL-Art-School
151 lines
4.8 KiB
Python
151 lines
4.8 KiB
Python
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
import numpy as np
|
||
|
|
||
|
from models.modules.FlowActNorms import ActNorm2d
|
||
|
from . import thops
|
||
|
|
||
|
|
||
|
class Conv2d(nn.Conv2d):
|
||
|
pad_dict = {
|
||
|
"same": lambda kernel, stride: [((k - 1) * s + 1) // 2 for k, s in zip(kernel, stride)],
|
||
|
"valid": lambda kernel, stride: [0 for _ in kernel]
|
||
|
}
|
||
|
|
||
|
@staticmethod
|
||
|
def get_padding(padding, kernel_size, stride):
|
||
|
# make paddding
|
||
|
if isinstance(padding, str):
|
||
|
if isinstance(kernel_size, int):
|
||
|
kernel_size = [kernel_size, kernel_size]
|
||
|
if isinstance(stride, int):
|
||
|
stride = [stride, stride]
|
||
|
padding = padding.lower()
|
||
|
try:
|
||
|
padding = Conv2d.pad_dict[padding](kernel_size, stride)
|
||
|
except KeyError:
|
||
|
raise ValueError("{} is not supported".format(padding))
|
||
|
return padding
|
||
|
|
||
|
def __init__(self, in_channels, out_channels,
|
||
|
kernel_size=[3, 3], stride=[1, 1],
|
||
|
padding="same", do_actnorm=True, weight_std=0.05):
|
||
|
padding = Conv2d.get_padding(padding, kernel_size, stride)
|
||
|
super().__init__(in_channels, out_channels, kernel_size, stride,
|
||
|
padding, bias=(not do_actnorm))
|
||
|
# init weight with std
|
||
|
self.weight.data.normal_(mean=0.0, std=weight_std)
|
||
|
if not do_actnorm:
|
||
|
self.bias.data.zero_()
|
||
|
else:
|
||
|
self.actnorm = ActNorm2d(out_channels)
|
||
|
self.do_actnorm = do_actnorm
|
||
|
|
||
|
def forward(self, input):
|
||
|
x = super().forward(input)
|
||
|
if self.do_actnorm:
|
||
|
x, _ = self.actnorm(x)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class Conv2dZeros(nn.Conv2d):
|
||
|
def __init__(self, in_channels, out_channels,
|
||
|
kernel_size=[3, 3], stride=[1, 1],
|
||
|
padding="same", logscale_factor=3):
|
||
|
padding = Conv2d.get_padding(padding, kernel_size, stride)
|
||
|
super().__init__(in_channels, out_channels, kernel_size, stride, padding)
|
||
|
# logscale_factor
|
||
|
self.logscale_factor = logscale_factor
|
||
|
self.register_parameter("logs", nn.Parameter(torch.zeros(out_channels, 1, 1)))
|
||
|
# init
|
||
|
self.weight.data.zero_()
|
||
|
self.bias.data.zero_()
|
||
|
|
||
|
def forward(self, input):
|
||
|
output = super().forward(input)
|
||
|
return output * torch.exp(self.logs * self.logscale_factor)
|
||
|
|
||
|
|
||
|
class GaussianDiag:
|
||
|
Log2PI = float(np.log(2 * np.pi))
|
||
|
|
||
|
@staticmethod
|
||
|
def likelihood(mean, logs, x):
|
||
|
"""
|
||
|
lnL = -1/2 * { ln|Var| + ((X - Mu)^T)(Var^-1)(X - Mu) + kln(2*PI) }
|
||
|
k = 1 (Independent)
|
||
|
Var = logs ** 2
|
||
|
"""
|
||
|
if mean is None and logs is None:
|
||
|
return -0.5 * (x ** 2 + GaussianDiag.Log2PI)
|
||
|
else:
|
||
|
return -0.5 * (logs * 2. + ((x - mean) ** 2) / torch.exp(logs * 2.) + GaussianDiag.Log2PI)
|
||
|
|
||
|
@staticmethod
|
||
|
def logp(mean, logs, x):
|
||
|
likelihood = GaussianDiag.likelihood(mean, logs, x)
|
||
|
return thops.sum(likelihood, dim=[1, 2, 3])
|
||
|
|
||
|
@staticmethod
|
||
|
def sample(mean, logs, eps_std=None):
|
||
|
eps_std = eps_std or 1
|
||
|
eps = torch.normal(mean=torch.zeros_like(mean),
|
||
|
std=torch.ones_like(logs) * eps_std)
|
||
|
return mean + torch.exp(logs) * eps
|
||
|
|
||
|
@staticmethod
|
||
|
def sample_eps(shape, eps_std, seed=None):
|
||
|
if seed is not None:
|
||
|
torch.manual_seed(seed)
|
||
|
eps = torch.normal(mean=torch.zeros(shape),
|
||
|
std=torch.ones(shape) * eps_std)
|
||
|
return eps
|
||
|
|
||
|
|
||
|
def squeeze2d(input, factor=2):
|
||
|
assert factor >= 1 and isinstance(factor, int)
|
||
|
if factor == 1:
|
||
|
return input
|
||
|
size = input.size()
|
||
|
B = size[0]
|
||
|
C = size[1]
|
||
|
H = size[2]
|
||
|
W = size[3]
|
||
|
assert H % factor == 0 and W % factor == 0, "{}".format((H, W, factor))
|
||
|
x = input.view(B, C, H // factor, factor, W // factor, factor)
|
||
|
x = x.permute(0, 1, 3, 5, 2, 4).contiguous()
|
||
|
x = x.view(B, C * factor * factor, H // factor, W // factor)
|
||
|
return x
|
||
|
|
||
|
|
||
|
def unsqueeze2d(input, factor=2):
|
||
|
assert factor >= 1 and isinstance(factor, int)
|
||
|
factor2 = factor ** 2
|
||
|
if factor == 1:
|
||
|
return input
|
||
|
size = input.size()
|
||
|
B = size[0]
|
||
|
C = size[1]
|
||
|
H = size[2]
|
||
|
W = size[3]
|
||
|
assert C % (factor2) == 0, "{}".format(C)
|
||
|
x = input.view(B, C // factor2, factor, factor, H, W)
|
||
|
x = x.permute(0, 1, 4, 2, 5, 3).contiguous()
|
||
|
x = x.view(B, C // (factor2), H * factor, W * factor)
|
||
|
return x
|
||
|
|
||
|
|
||
|
class SqueezeLayer(nn.Module):
|
||
|
def __init__(self, factor):
|
||
|
super().__init__()
|
||
|
self.factor = factor
|
||
|
|
||
|
def forward(self, input, logdet=None, reverse=False):
|
||
|
if not reverse:
|
||
|
output = squeeze2d(input, self.factor) # Squeeze in forward
|
||
|
return output, logdet
|
||
|
else:
|
||
|
output = unsqueeze2d(input, self.factor)
|
||
|
return output, logdet
|