forked from mrq/DL-Art-School
undo latent converter change
This commit is contained in:
parent
55c86e02c7
commit
00767219fc
|
@ -152,11 +152,7 @@ class DiffusionTtsFlat(nn.Module):
|
||||||
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
||||||
)
|
)
|
||||||
self.code_norm = normalization(model_channels)
|
self.code_norm = normalization(model_channels)
|
||||||
self.autoregressive_latent_converter = nn.Sequential(nn.Conv1d(in_latent_channels, model_channels, 1),
|
self.latent_converter = nn.Conv1d(in_latent_channels, model_channels, 1)
|
||||||
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
|
||||||
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
|
||||||
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
|
||||||
)
|
|
||||||
self.contextual_embedder = nn.Sequential(nn.Conv1d(in_channels,model_channels,3,padding=1,stride=2),
|
self.contextual_embedder = nn.Sequential(nn.Conv1d(in_channels,model_channels,3,padding=1,stride=2),
|
||||||
nn.Conv1d(model_channels, model_channels*2,3,padding=1,stride=2),
|
nn.Conv1d(model_channels, model_channels*2,3,padding=1,stride=2),
|
||||||
AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True, do_checkpoint=False),
|
AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True, do_checkpoint=False),
|
||||||
|
@ -183,7 +179,7 @@ class DiffusionTtsFlat(nn.Module):
|
||||||
)
|
)
|
||||||
|
|
||||||
if freeze_everything_except_autoregressive_inputs:
|
if freeze_everything_except_autoregressive_inputs:
|
||||||
for ap in list(self.autoregressive_latent_converter.parameters()):
|
for ap in list(self.latent_converter.parameters()):
|
||||||
ap.ALLOWED_IN_FLAT = True
|
ap.ALLOWED_IN_FLAT = True
|
||||||
for p in self.parameters():
|
for p in self.parameters():
|
||||||
if not hasattr(p, 'ALLOWED_IN_FLAT'):
|
if not hasattr(p, 'ALLOWED_IN_FLAT'):
|
||||||
|
@ -194,7 +190,7 @@ class DiffusionTtsFlat(nn.Module):
|
||||||
groups = {
|
groups = {
|
||||||
'minicoder': list(self.contextual_embedder.parameters()),
|
'minicoder': list(self.contextual_embedder.parameters()),
|
||||||
'layers': list(self.layers.parameters()),
|
'layers': list(self.layers.parameters()),
|
||||||
'code_converters': list(self.code_embedding.parameters()) + list(self.code_converter.parameters()) + list(self.autoregressive_latent_converter.parameters()) + list(self.autoregressive_latent_converter.parameters()),
|
'code_converters': list(self.code_embedding.parameters()) + list(self.code_converter.parameters()) + list(self.latent_converter.parameters()) + list(self.latent_converter.parameters()),
|
||||||
'timestep_integrator': list(self.conditioning_timestep_integrator.parameters()) + list(self.integrating_conv.parameters()),
|
'timestep_integrator': list(self.conditioning_timestep_integrator.parameters()) + list(self.integrating_conv.parameters()),
|
||||||
'time_embed': list(self.time_embed.parameters()),
|
'time_embed': list(self.time_embed.parameters()),
|
||||||
}
|
}
|
||||||
|
@ -215,7 +211,7 @@ class DiffusionTtsFlat(nn.Module):
|
||||||
cond_emb = conds.mean(dim=-1)
|
cond_emb = conds.mean(dim=-1)
|
||||||
cond_scale, cond_shift = torch.chunk(cond_emb, 2, dim=1)
|
cond_scale, cond_shift = torch.chunk(cond_emb, 2, dim=1)
|
||||||
if is_latent(aligned_conditioning):
|
if is_latent(aligned_conditioning):
|
||||||
code_emb = self.autoregressive_latent_converter(aligned_conditioning)
|
code_emb = self.latent_converter(aligned_conditioning)
|
||||||
else:
|
else:
|
||||||
code_emb = self.code_embedding(aligned_conditioning).permute(0, 2, 1)
|
code_emb = self.code_embedding(aligned_conditioning).permute(0, 2, 1)
|
||||||
code_emb = self.code_converter(code_emb)
|
code_emb = self.code_converter(code_emb)
|
||||||
|
@ -258,7 +254,7 @@ class DiffusionTtsFlat(nn.Module):
|
||||||
if conditioning_free:
|
if conditioning_free:
|
||||||
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, x.shape[-1])
|
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, x.shape[-1])
|
||||||
unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters()))
|
unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters()))
|
||||||
unused_params.extend(list(self.autoregressive_latent_converter.parameters()))
|
unused_params.extend(list(self.latent_converter.parameters()))
|
||||||
else:
|
else:
|
||||||
if precomputed_aligned_embeddings is not None:
|
if precomputed_aligned_embeddings is not None:
|
||||||
code_emb = precomputed_aligned_embeddings
|
code_emb = precomputed_aligned_embeddings
|
||||||
|
|
Loading…
Reference in New Issue
Block a user