diff --git a/codes/models/gpt_voice/gpt_tts_hf.py b/codes/models/gpt_voice/gpt_tts_hf.py new file mode 100644 index 00000000..1e6f3611 --- /dev/null +++ b/codes/models/gpt_voice/gpt_tts_hf.py @@ -0,0 +1,116 @@ +from time import time + +import torch +import torch.nn as nn +import torch.nn.functional as F +from transformers import GPT2Model, GPT2Config, GPT2LMHeadModel, GPT2PreTrainedModel +from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions +from transformers.utils.model_parallel_utils import get_device_map, assert_device_map + +from models.gpt_voice.mini_encoder import AudioMiniEncoder +from models.tacotron2.text import symbols +from trainer.networks import register_model +from utils.util import opt_get + + +class GptTtsHf(nn.Module): + NUMBER_TEXT_TOKENS = len(symbols)+1 + START_TEXT_TOKEN = len(symbols) + STOP_TEXT_TOKEN = 0 + NUMBER_MEL_CODES = 8194 + START_MEL_TOKEN = 8192 + STOP_MEL_TOKEN = 8193 + + def __init__(self, layers=8, model_dim=512, heads=8, max_symbols_per_phrase=200, max_mel_tokens=250, max_conditioning_inputs=3, checkpointing=True): + super().__init__() + self.max_mel_tokens = max_mel_tokens + self.max_symbols_per_phrase = max_symbols_per_phrase + + self.model_dim = model_dim + self.max_mel_tokens = max_mel_tokens + self.max_conditioning_inputs = max_conditioning_inputs + self.conditioning_encoder = AudioMiniEncoder(80, model_dim) + self.text_pos_embedding = nn.Embedding(self.max_symbols_per_phrase + 1, model_dim) + self.conditioning_embedding = nn.Embedding(self.max_conditioning_inputs, model_dim) + self.mel_pos_embedding = nn.Embedding(self.max_mel_tokens + 2, model_dim) + seq_length = 2+self.max_symbols_per_phrase+self.max_conditioning_inputs+self.max_mel_tokens + self.gpt_config = GPT2Config(vocab_size=self.NUMBER_MEL_CODES, + n_positions=seq_length, + n_ctx=seq_length, + n_embd=model_dim, + n_layer=layers, + n_head=heads, + gradient_checkpointing=checkpointing, + use_cache=not checkpointing) + self.gpt = GPT2Model(self.gpt_config) + self.final_norm = nn.LayerNorm(model_dim) + self.text_head = nn.Linear(model_dim, self.NUMBER_TEXT_TOKENS) + self.mel_head = nn.Linear(model_dim, self.NUMBER_MEL_CODES) + + + def get_logits(self, text_inputs, cond_inputs, mel_targets, get_attns=False): + assert text_inputs.shape[1] <= self.max_symbols_per_phrase + assert cond_inputs.shape[1] <= self.max_conditioning_inputs + assert mel_targets.shape[1] <= self.max_mel_tokens + + mel_targets = F.pad(mel_targets, (1,0), value=self.START_MEL_TOKEN) + mel_targets = F.pad(mel_targets, (0, self.max_mel_tokens - mel_targets.shape[1]), value=self.STOP_MEL_TOKEN) + mel_emb = self.gpt.get_input_embeddings()(mel_targets) + mel_emb = mel_emb + self.mel_pos_embedding(torch.arange(mel_emb.shape[1], device=mel_targets.device)) + + text_targets = F.pad(text_inputs, (1,0), value=self.START_TEXT_TOKEN) + text_targets = F.pad(text_inputs, (0, self.max_symbols_per_phrase - text_targets.shape[1]), value=self.STOP_TEXT_TOKEN) + text_emb = self.gpt.get_input_embeddings()(text_targets) + text_emb = text_emb + self.text_pos_embedding(torch.arange(text_emb.shape[1], device=text_targets.device)) + + conds = [] + for k in range(cond_inputs.shape[1]): + conds.append(self.conditioning_encoder(cond_inputs[:, k])) + while len(conds) < self.max_conditioning_inputs: + conds.append(conds[-1]) + conds = torch.stack(conds, dim=1) + conds = conds + self.conditioning_embedding(torch.arange(conds.shape[1], device=conds.device)) + + emb = torch.cat([mel_emb, conds, text_emb], dim=1) + gpt_out = self.gpt(inputs_embeds=emb, return_dict=True, output_attentions=get_attns) + if get_attns: + return gpt_out.attentions + enc = gpt_out.last_hidden_state + + text_logits = self.final_norm(enc[:, :self.max_symbols_per_phrase]) + text_logits = self.text_head(text_logits) + text_logits = text_logits.permute(0,2,1) + mel_logits = self.final_norm(enc[:, -self.max_mel_tokens:]) + mel_logits = self.mel_head(mel_logits) + mel_logits = mel_logits.permute(0,2,1) + + return text_logits, mel_logits + + def forward(self, text_inputs, cond_inputs, mel_targets, return_attentions=False): + """ + Forward pass + text_inputs: long tensor, (b,t) + cond_inputs: MEL float tensor, (b,c,80,s) + mel_targets: long tensor, (b,m) + """ + text_logits, mel_logits = self.get_logits(text_inputs, cond_inputs, mel_targets, get_attns=return_attentions) + if return_attentions: + return mel_logits + + text_targets = F.pad(text_inputs, (0,self.max_symbols_per_phrase-text_inputs.shape[1]), value=self.STOP_TEXT_TOKEN) + loss_text = F.cross_entropy(text_logits, text_targets.long()) + mel_targets = F.pad(mel_targets, (0,self.max_mel_tokens-mel_targets.shape[1]), value=self.STOP_MEL_TOKEN) + loss_mel = F.cross_entropy(mel_logits, mel_targets.long()) + return loss_text.mean(), loss_mel.mean(), mel_logits + + +@register_model +def register_gpt_tts_hf(opt_net, opt): + return GptTtsHf(**opt_get(opt_net, ['kwargs'], {})) + + +if __name__ == '__main__': + gpt = GptTtsHf() + l = gpt(torch.randint(high=len(symbols), size=(2,100)), + torch.randn(2,2,80,800), + torch.randint(high=8192, size=(2,200)))