forked from mrq/DL-Art-School
Remove dualoutputsrg
Good idea, didn't pan out.
This commit is contained in:
parent
4bcc409fc7
commit
0c4c388e15
|
@ -335,95 +335,3 @@ class ConfigurableSwitchedResidualGenerator3(nn.Module):
|
|||
val["switch_%i_histogram" % (i,)] = hists[i]
|
||||
return val
|
||||
|
||||
|
||||
class DualOutputSRG(nn.Module):
|
||||
def __init__(self, switch_depth, switch_filters, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes,
|
||||
trans_layers, transformation_filters, initial_temp=20, final_temperature_step=50000, heightened_temp_min=1,
|
||||
heightened_final_step=50000, upsample_factor=1,
|
||||
add_scalable_noise_to_transforms=False):
|
||||
super(DualOutputSRG, self).__init__()
|
||||
switches = []
|
||||
self.initial_conv = ConvBnLelu(3, transformation_filters, norm=False, activation=False, bias=True)
|
||||
|
||||
self.fea_upconv1 = ConvBnLelu(transformation_filters, transformation_filters, norm=False, bias=True)
|
||||
self.fea_upconv2 = ConvBnLelu(transformation_filters, transformation_filters, norm=False, bias=True)
|
||||
self.fea_hr_conv = ConvBnLelu(transformation_filters, transformation_filters, norm=False, bias=True)
|
||||
self.fea_final_conv = ConvBnLelu(transformation_filters, 3, norm=False, activation=False, bias=True)
|
||||
|
||||
self.upconv1 = ConvBnLelu(transformation_filters, transformation_filters, norm=False, bias=True)
|
||||
self.upconv2 = ConvBnLelu(transformation_filters, transformation_filters, norm=False, bias=True)
|
||||
self.hr_conv = ConvBnLelu(transformation_filters, transformation_filters, norm=False, bias=True)
|
||||
self.final_conv = ConvBnLelu(transformation_filters, 3, norm=False, activation=False, bias=True)
|
||||
|
||||
for _ in range(switch_depth):
|
||||
multiplx_fn = functools.partial(ConvBasisMultiplexer, transformation_filters, switch_filters, switch_reductions, switch_processing_layers, trans_counts)
|
||||
pretransform_fn = functools.partial(ConvBnLelu, transformation_filters, transformation_filters, norm=False, bias=False, weight_init_factor=.1)
|
||||
transform_fn = functools.partial(MultiConvBlock, transformation_filters, int(transformation_filters * 1.5), transformation_filters, kernel_size=trans_kernel_sizes, depth=trans_layers, weight_init_factor=.1)
|
||||
switches.append(ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||
pre_transform_block=pretransform_fn, transform_block=transform_fn,
|
||||
transform_count=trans_counts, init_temp=initial_temp,
|
||||
add_scalable_noise_to_transforms=add_scalable_noise_to_transforms))
|
||||
|
||||
self.switches = nn.ModuleList(switches)
|
||||
self.transformation_counts = trans_counts
|
||||
self.init_temperature = initial_temp
|
||||
self.final_temperature_step = final_temperature_step
|
||||
self.heightened_temp_min = heightened_temp_min
|
||||
self.heightened_final_step = heightened_final_step
|
||||
self.attentions = None
|
||||
self.upsample_factor = upsample_factor
|
||||
assert self.upsample_factor == 2 or self.upsample_factor == 4
|
||||
|
||||
def forward(self, x):
|
||||
x = self.initial_conv(x)
|
||||
|
||||
self.attentions = []
|
||||
for i, sw in enumerate(self.switches):
|
||||
x, att = sw.forward(x, True)
|
||||
self.attentions.append(att)
|
||||
|
||||
if i == len(self.switches)-2:
|
||||
fea = self.fea_upconv1(F.interpolate(x, scale_factor=2, mode="nearest"))
|
||||
if self.upsample_factor > 2:
|
||||
fea = F.interpolate(fea, scale_factor=2, mode="nearest")
|
||||
fea = self.fea_upconv2(fea)
|
||||
fea = self.fea_final_conv(self.hr_conv(fea))
|
||||
|
||||
x = self.upconv1(F.interpolate(x, scale_factor=2, mode="nearest"))
|
||||
if self.upsample_factor > 2:
|
||||
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
||||
x = self.upconv2(x)
|
||||
return fea, self.final_conv(self.hr_conv(x))
|
||||
|
||||
def set_temperature(self, temp):
|
||||
[sw.set_temperature(temp) for sw in self.switches]
|
||||
|
||||
def update_for_step(self, step, experiments_path='.'):
|
||||
if self.attentions:
|
||||
temp = max(1,
|
||||
1 + self.init_temperature * (self.final_temperature_step - step) / self.final_temperature_step)
|
||||
if temp == 1 and self.heightened_final_step and step > self.final_temperature_step and \
|
||||
self.heightened_final_step != 1:
|
||||
# Once the temperature passes (1) it enters an inverted curve to match the linear curve from above.
|
||||
# without this, the attention specificity "spikes" incredibly fast in the last few iterations.
|
||||
h_steps_total = self.heightened_final_step - self.final_temperature_step
|
||||
h_steps_current = min(step - self.final_temperature_step, h_steps_total)
|
||||
# The "gap" will represent the steps that need to be traveled as a linear function.
|
||||
h_gap = 1 / self.heightened_temp_min
|
||||
temp = h_gap * h_steps_current / h_steps_total
|
||||
# Invert temperature to represent reality on this side of the curve
|
||||
temp = 1 / temp
|
||||
self.set_temperature(temp)
|
||||
if step % 50 == 0:
|
||||
save_attention_to_image(experiments_path, self.attentions[0], self.transformation_counts, step, "a%i" % (1,), l_mult=10)
|
||||
|
||||
def get_debug_values(self, step):
|
||||
temp = self.switches[0].switch.temperature
|
||||
mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions]
|
||||
means = [i[0] for i in mean_hists]
|
||||
hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists]
|
||||
val = {"switch_temperature": temp}
|
||||
for i in range(len(means)):
|
||||
val["switch_%i_specificity" % (i,)] = means[i]
|
||||
val["switch_%i_histogram" % (i,)] = hists[i]
|
||||
return val
|
Loading…
Reference in New Issue
Block a user