forked from mrq/DL-Art-School
base DVAE & vector_quantizer
This commit is contained in:
parent
f2a31702b5
commit
0dee15f875
|
@ -285,7 +285,7 @@ class DiffusionVocoderWithRef(nn.Module):
|
|||
self.middle_block.apply(convert_module_to_f32)
|
||||
self.output_blocks.apply(convert_module_to_f32)
|
||||
|
||||
def forward(self, x, timesteps, discrete_spectrogram, conditioning_inputs=None, num_conditioning_signals=None):
|
||||
def forward(self, x, timesteps, spectrogram, conditioning_inputs=None, num_conditioning_signals=None):
|
||||
"""
|
||||
Apply the model to an input batch.
|
||||
|
||||
|
@ -311,7 +311,7 @@ class DiffusionVocoderWithRef(nn.Module):
|
|||
h = x.type(self.dtype)
|
||||
for k, module in enumerate(self.input_blocks):
|
||||
if isinstance(module, DiscreteSpectrogramConditioningBlock):
|
||||
h = module(h, discrete_spectrogram)
|
||||
h = module(h, spectrogram)
|
||||
else:
|
||||
h = module(h, emb)
|
||||
hs.append(h)
|
||||
|
|
241
codes/models/vqvae/dvae.py
Normal file
241
codes/models/vqvae/dvae.py
Normal file
|
@ -0,0 +1,241 @@
|
|||
import functools
|
||||
import math
|
||||
from math import sqrt
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange
|
||||
from torch import einsum
|
||||
|
||||
from models.gpt_voice.dvae_arch_playground.discretization_loss import DiscretizationLoss
|
||||
from models.vqvae.vector_quantizer import VectorQuantize
|
||||
from models.vqvae.vqvae import Quantize
|
||||
from trainer.networks import register_model
|
||||
from utils.util import opt_get
|
||||
|
||||
|
||||
def eval_decorator(fn):
|
||||
def inner(model, *args, **kwargs):
|
||||
was_training = model.training
|
||||
model.eval()
|
||||
out = fn(model, *args, **kwargs)
|
||||
model.train(was_training)
|
||||
return out
|
||||
return inner
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
def __init__(self, chan, conv, activation):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
conv(chan, chan, 3, padding = 1),
|
||||
activation(),
|
||||
conv(chan, chan, 3, padding = 1),
|
||||
activation(),
|
||||
conv(chan, chan, 1)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x) + x
|
||||
|
||||
|
||||
class UpsampledConv(nn.Module):
|
||||
def __init__(self, conv, *args, **kwargs):
|
||||
super().__init__()
|
||||
assert 'stride' in kwargs.keys()
|
||||
self.stride = kwargs['stride']
|
||||
del kwargs['stride']
|
||||
self.conv = conv(*args, **kwargs)
|
||||
|
||||
def forward(self, x):
|
||||
up = nn.functional.interpolate(x, scale_factor=self.stride, mode='nearest')
|
||||
return self.conv(up)
|
||||
|
||||
|
||||
class DiscreteVAE(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
positional_dims=2,
|
||||
num_tokens = 512,
|
||||
codebook_dim = 512,
|
||||
num_layers = 3,
|
||||
num_resnet_blocks = 0,
|
||||
hidden_dim = 64,
|
||||
channels = 3,
|
||||
stride = 2,
|
||||
kernel_size = 3,
|
||||
activation = 'relu',
|
||||
straight_through = False,
|
||||
record_codes = False,
|
||||
discretization_loss_averaging_steps = 100,
|
||||
quantizer_use_cosine_sim=True,
|
||||
quantizer_codebook_misses_to_expiration=40,
|
||||
quantizer_codebook_embedding_compression=None,
|
||||
):
|
||||
super().__init__()
|
||||
assert num_layers >= 1, 'number of layers must be greater than or equal to 1'
|
||||
has_resblocks = num_resnet_blocks > 0
|
||||
|
||||
self.num_tokens = num_tokens
|
||||
self.num_layers = num_layers
|
||||
self.straight_through = straight_through
|
||||
self.positional_dims = positional_dims
|
||||
self.discrete_loss = DiscretizationLoss(num_tokens, 2, 1 / (num_tokens*2), discretization_loss_averaging_steps)
|
||||
|
||||
assert positional_dims > 0 and positional_dims < 3 # This VAE only supports 1d and 2d inputs for now.
|
||||
if positional_dims == 2:
|
||||
conv = nn.Conv2d
|
||||
conv_transpose = functools.partial(UpsampledConv, conv)
|
||||
else:
|
||||
conv = nn.Conv1d
|
||||
conv_transpose = functools.partial(UpsampledConv, conv)
|
||||
|
||||
if activation == 'relu':
|
||||
act = nn.ReLU
|
||||
elif activation == 'silu':
|
||||
act = nn.SiLU
|
||||
else:
|
||||
assert NotImplementedError()
|
||||
|
||||
|
||||
enc_chans = [hidden_dim * 2 ** i for i in range(num_layers)]
|
||||
dec_chans = list(reversed(enc_chans))
|
||||
|
||||
enc_chans = [channels, *enc_chans]
|
||||
|
||||
dec_init_chan = codebook_dim if not has_resblocks else dec_chans[0]
|
||||
dec_chans = [dec_init_chan, *dec_chans]
|
||||
|
||||
enc_chans_io, dec_chans_io = map(lambda t: list(zip(t[:-1], t[1:])), (enc_chans, dec_chans))
|
||||
|
||||
enc_layers = []
|
||||
dec_layers = []
|
||||
|
||||
pad = (kernel_size - 1) // 2
|
||||
for (enc_in, enc_out), (dec_in, dec_out) in zip(enc_chans_io, dec_chans_io):
|
||||
enc_layers.append(nn.Sequential(conv(enc_in, enc_out, kernel_size, stride = stride, padding = pad), act()))
|
||||
dec_layers.append(nn.Sequential(conv_transpose(dec_in, dec_out, kernel_size, stride = stride, padding = pad), act()))
|
||||
|
||||
for _ in range(num_resnet_blocks):
|
||||
dec_layers.insert(0, ResBlock(dec_chans[1], conv, act))
|
||||
enc_layers.append(ResBlock(enc_chans[-1], conv, act))
|
||||
|
||||
if num_resnet_blocks > 0:
|
||||
dec_layers.insert(0, conv(codebook_dim, dec_chans[1], 1))
|
||||
|
||||
enc_layers.append(conv(enc_chans[-1], codebook_dim, 1))
|
||||
dec_layers.append(conv(dec_chans[-1], channels, 1))
|
||||
|
||||
self.encoder = nn.Sequential(*enc_layers)
|
||||
self.quantizer = VectorQuantize(codebook_dim, num_tokens, codebook_dim=quantizer_codebook_embedding_compression,
|
||||
use_cosine_sim=quantizer_use_cosine_sim,
|
||||
max_codebook_misses_before_expiry=quantizer_codebook_misses_to_expiration)
|
||||
self.decoder = nn.Sequential(*dec_layers)
|
||||
|
||||
self.loss_fn = F.mse_loss
|
||||
|
||||
self.record_codes = record_codes
|
||||
if record_codes:
|
||||
self.codes = torch.zeros((1228800,), dtype=torch.long)
|
||||
self.code_ind = 0
|
||||
self.internal_step = 0
|
||||
|
||||
def get_debug_values(self, step, __):
|
||||
if self.record_codes:
|
||||
# Report annealing schedule
|
||||
return {'histogram_codes': self.codes}
|
||||
else:
|
||||
return {}
|
||||
|
||||
@torch.no_grad()
|
||||
@eval_decorator
|
||||
def get_codebook_indices(self, images):
|
||||
logits = self.encoder(images).permute((0,2,3,1) if len(images.shape) == 4 else (0,2,1))
|
||||
sampled, codes, commitment_loss = self.quantizer(logits)
|
||||
return codes
|
||||
|
||||
def decode(
|
||||
self,
|
||||
img_seq
|
||||
):
|
||||
self.log_codes(img_seq)
|
||||
image_embeds = self.quantizer.decode(img_seq)
|
||||
b, n, d = image_embeds.shape
|
||||
|
||||
kwargs = {}
|
||||
if self.positional_dims == 1:
|
||||
arrange = 'b n d -> b d n'
|
||||
else:
|
||||
h = w = int(sqrt(n))
|
||||
arrange = 'b (h w) d -> b d h w'
|
||||
kwargs = {'h': h, 'w': w}
|
||||
image_embeds = rearrange(image_embeds, arrange, **kwargs)
|
||||
images = [image_embeds]
|
||||
for layer in self.decoder:
|
||||
images.append(layer(images[-1]))
|
||||
return images[-1], images[-2]
|
||||
|
||||
def infer(self, img):
|
||||
logits = self.encoder(img).permute((0,2,3,1) if len(img.shape) == 4 else (0,2,1))
|
||||
sampled, codes, commitment_loss = self.quantizer(logits)
|
||||
return self.decode(codes)
|
||||
|
||||
# Note: This module is not meant to be run in forward() except while training. It has special logic which performs
|
||||
# evaluation using quantized values when it detects that it is being run in eval() mode, which will be substantially
|
||||
# more lossy (but useful for determining network performance).
|
||||
def forward(
|
||||
self,
|
||||
img
|
||||
):
|
||||
logits = self.encoder(img).permute((0,2,3,1) if len(img.shape) == 4 else (0,2,1))
|
||||
sampled, codes, commitment_loss = self.quantizer(logits)
|
||||
sampled = sampled.permute((0,3,1,2) if len(img.shape) == 4 else (0,2,1))
|
||||
|
||||
if self.training:
|
||||
out = sampled
|
||||
for d in self.decoder:
|
||||
out = d(out)
|
||||
else:
|
||||
# This is non-differentiable, but gives a better idea of how the network is actually performing.
|
||||
out, _ = self.decode(codes)
|
||||
|
||||
# reconstruction loss
|
||||
recon_loss = self.loss_fn(img, out, reduction='none')
|
||||
|
||||
# This is so we can debug the distribution of codes being learned.
|
||||
self.log_codes(codes)
|
||||
|
||||
return recon_loss, commitment_loss, out
|
||||
|
||||
def log_codes(self, codes):
|
||||
# This is so we can debug the distribution of codes being learned.
|
||||
if self.record_codes and self.internal_step % 50 == 0:
|
||||
codes = codes.flatten()
|
||||
l = codes.shape[0]
|
||||
i = self.code_ind if (self.codes.shape[0] - self.code_ind) > l else self.codes.shape[0] - l
|
||||
self.codes[i:i+l] = codes.cpu()
|
||||
self.code_ind = self.code_ind + l
|
||||
if self.code_ind >= self.codes.shape[0]:
|
||||
self.code_ind = 0
|
||||
self.internal_step += 1
|
||||
|
||||
|
||||
@register_model
|
||||
def register_dvae(opt_net, opt):
|
||||
return DiscreteVAE(**opt_get(opt_net, ['kwargs'], {}))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
#v = DiscreteVAE()
|
||||
#o=v(torch.randn(1,3,256,256))
|
||||
#print(o.shape)
|
||||
v = DiscreteVAE(channels=80, positional_dims=1, num_tokens=4096, codebook_dim=1024,
|
||||
hidden_dim=512, stride=2, num_resnet_blocks=2, kernel_size=3, num_layers=2,
|
||||
quantizer_codebook_embedding_compression=64)
|
||||
#v.eval()
|
||||
loss, commitment, out = v(torch.randn(1,80,256))
|
||||
print(out.shape)
|
||||
codes = v.get_codebook_indices(torch.randn(1,80,256))
|
||||
back, back_emb = v.decode(codes)
|
||||
print(back.shape)
|
245
codes/models/vqvae/vector_quantizer.py
Normal file
245
codes/models/vqvae/vector_quantizer.py
Normal file
|
@ -0,0 +1,245 @@
|
|||
import torch
|
||||
from torch import nn, einsum
|
||||
import torch.nn.functional as F
|
||||
from einops import rearrange, repeat
|
||||
|
||||
from models.arch_util import l2norm, sample_vectors, default, ema_inplace
|
||||
|
||||
|
||||
def kmeans(samples, num_clusters, num_iters = 10, use_cosine_sim = False):
|
||||
dim, dtype, device = samples.shape[-1], samples.dtype, samples.device
|
||||
|
||||
means = sample_vectors(samples, num_clusters)
|
||||
|
||||
for _ in range(num_iters):
|
||||
if use_cosine_sim:
|
||||
dists = samples @ means.t()
|
||||
else:
|
||||
diffs = rearrange(samples, 'n d -> n () d') - rearrange(means, 'c d -> () c d')
|
||||
dists = -(diffs ** 2).sum(dim = -1)
|
||||
|
||||
buckets = dists.max(dim = -1).indices
|
||||
bins = torch.bincount(buckets, minlength = num_clusters)
|
||||
zero_mask = bins == 0
|
||||
bins = bins.masked_fill(zero_mask, 1)
|
||||
|
||||
new_means = buckets.new_zeros(num_clusters, dim, dtype = dtype)
|
||||
new_means.scatter_add_(0, repeat(buckets, 'n -> n d', d = dim), samples)
|
||||
new_means = new_means / bins[..., None]
|
||||
|
||||
if use_cosine_sim:
|
||||
new_means = l2norm(new_means)
|
||||
|
||||
means = torch.where(zero_mask[..., None], means, new_means)
|
||||
|
||||
return means
|
||||
|
||||
# distance types
|
||||
|
||||
class EuclideanCodebook(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
codebook_size,
|
||||
kmeans_init = False,
|
||||
kmeans_iters = 10,
|
||||
decay = 0.8,
|
||||
eps = 1e-5
|
||||
):
|
||||
super().__init__()
|
||||
self.decay = decay
|
||||
init_fn = torch.randn if not kmeans_init else torch.zeros
|
||||
embed = init_fn(codebook_size, dim)
|
||||
|
||||
self.codebook_size = codebook_size
|
||||
self.kmeans_iters = kmeans_iters
|
||||
self.eps = eps
|
||||
|
||||
self.register_buffer('initted', torch.Tensor([not kmeans_init]))
|
||||
self.register_buffer('cluster_size', torch.zeros(codebook_size))
|
||||
self.register_buffer('embed', embed)
|
||||
self.register_buffer('embed_avg', embed.clone())
|
||||
|
||||
def init_embed_(self, data):
|
||||
embed = kmeans(data, self.codebook_size, self.kmeans_iters)
|
||||
self.embed.data.copy_(embed)
|
||||
self.embed_avg.data.copy_(embed.clone())
|
||||
self.initted.data.copy_(torch.Tensor([True]))
|
||||
|
||||
def replace(self, samples, mask):
|
||||
modified_codebook = torch.where(mask[..., None], sample_vectors(samples, self.codebook_size), self.embed)
|
||||
self.embed.data.copy_(modified_codebook)
|
||||
|
||||
def forward(self, x):
|
||||
shape, dtype = x.shape, x.dtype
|
||||
flatten = rearrange(x, '... d -> (...) d')
|
||||
embed = self.embed.t()
|
||||
|
||||
if not self.initted:
|
||||
self.init_embed_(flatten)
|
||||
|
||||
dist = -(
|
||||
flatten.pow(2).sum(1, keepdim=True)
|
||||
- 2 * flatten @ embed
|
||||
+ embed.pow(2).sum(0, keepdim=True)
|
||||
)
|
||||
|
||||
embed_ind = dist.max(dim = -1).indices
|
||||
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(x.dtype)
|
||||
embed_ind = embed_ind.view(*shape[:-1])
|
||||
quantize = F.embedding(embed_ind, self.embed)
|
||||
|
||||
if self.training:
|
||||
ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay)
|
||||
embed_sum = flatten.t() @ embed_onehot
|
||||
ema_inplace(self.embed_avg, embed_sum.t(), self.decay)
|
||||
cluster_size = laplace_smoothing(self.cluster_size, self.codebook_size, self.eps) * self.cluster_size.sum()
|
||||
embed_normalized = self.embed_avg / cluster_size.unsqueeze(1)
|
||||
self.embed.data.copy_(embed_normalized)
|
||||
|
||||
return quantize, embed_ind
|
||||
|
||||
class CosineSimCodebook(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
codebook_size,
|
||||
kmeans_init = False,
|
||||
kmeans_iters = 10,
|
||||
decay = 0.8,
|
||||
eps = 1e-5
|
||||
):
|
||||
super().__init__()
|
||||
self.decay = decay
|
||||
|
||||
if not kmeans_init:
|
||||
embed = l2norm(torch.randn(codebook_size, dim))
|
||||
else:
|
||||
embed = torch.zeros(codebook_size, dim)
|
||||
|
||||
self.codebook_size = codebook_size
|
||||
self.kmeans_iters = kmeans_iters
|
||||
self.eps = eps
|
||||
|
||||
self.register_buffer('initted', torch.Tensor([not kmeans_init]))
|
||||
self.register_buffer('embed', embed)
|
||||
|
||||
def init_embed_(self, data):
|
||||
embed = kmeans(data, self.codebook_size, self.kmeans_iters, use_cosine_sim = True)
|
||||
self.embed.data.copy_(embed)
|
||||
self.initted.data.copy_(torch.Tensor([True]))
|
||||
|
||||
def replace(self, samples, mask):
|
||||
samples = l2norm(samples)
|
||||
modified_codebook = torch.where(mask[..., None], sample_vectors(samples, self.codebook_size), self.embed)
|
||||
self.embed.data.copy_(modified_codebook)
|
||||
|
||||
def forward(self, x):
|
||||
shape, dtype = x.shape, x.dtype
|
||||
flatten = rearrange(x, '... d -> (...) d')
|
||||
flatten = l2norm(flatten)
|
||||
|
||||
if not self.initted:
|
||||
self.init_embed_(flatten)
|
||||
|
||||
embed = l2norm(self.embed)
|
||||
dist = flatten @ embed.t()
|
||||
embed_ind = dist.max(dim = -1).indices
|
||||
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
|
||||
embed_ind = embed_ind.view(*shape[:-1])
|
||||
|
||||
quantize = F.embedding(embed_ind, self.embed)
|
||||
|
||||
if self.training:
|
||||
bins = embed_onehot.sum(0)
|
||||
zero_mask = (bins == 0)
|
||||
bins = bins.masked_fill(zero_mask, 1.)
|
||||
|
||||
embed_sum = flatten.t() @ embed_onehot
|
||||
embed_normalized = (embed_sum / bins.unsqueeze(0)).t()
|
||||
embed_normalized = l2norm(embed_normalized)
|
||||
embed_normalized = torch.where(zero_mask[..., None], embed, embed_normalized)
|
||||
ema_inplace(self.embed, embed_normalized, self.decay)
|
||||
|
||||
return quantize, embed_ind
|
||||
|
||||
# main class
|
||||
|
||||
class VectorQuantize(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
codebook_size,
|
||||
n_embed = None,
|
||||
codebook_dim = None,
|
||||
decay = 0.8,
|
||||
eps = 1e-5,
|
||||
kmeans_init = False,
|
||||
kmeans_iters = 10,
|
||||
use_cosine_sim = False,
|
||||
max_codebook_misses_before_expiry = 0
|
||||
):
|
||||
super().__init__()
|
||||
n_embed = default(n_embed, codebook_size)
|
||||
|
||||
codebook_dim = default(codebook_dim, dim)
|
||||
requires_projection = codebook_dim != dim
|
||||
self.project_in = nn.Linear(dim, codebook_dim) if requires_projection else nn.Identity()
|
||||
self.project_out = nn.Linear(codebook_dim, dim) if requires_projection else nn.Identity()
|
||||
|
||||
self.eps = eps
|
||||
|
||||
klass = EuclideanCodebook if not use_cosine_sim else CosineSimCodebook
|
||||
|
||||
self._codebook = klass(
|
||||
dim = codebook_dim,
|
||||
codebook_size = n_embed,
|
||||
kmeans_init = kmeans_init,
|
||||
kmeans_iters = kmeans_iters,
|
||||
decay = decay,
|
||||
eps = eps
|
||||
)
|
||||
|
||||
self.codebook_size = codebook_size
|
||||
self.max_codebook_misses_before_expiry = max_codebook_misses_before_expiry
|
||||
|
||||
if max_codebook_misses_before_expiry > 0:
|
||||
codebook_misses = torch.zeros(codebook_size)
|
||||
self.register_buffer('codebook_misses', codebook_misses)
|
||||
|
||||
@property
|
||||
def codebook(self):
|
||||
return self._codebook.codebook
|
||||
|
||||
def decode(self, codes):
|
||||
unembed = F.embedding(codes, self._codebook.embed)
|
||||
return self.project_out(unembed)
|
||||
|
||||
def expire_codes_(self, embed_ind, batch_samples):
|
||||
if self.max_codebook_misses_before_expiry == 0:
|
||||
return
|
||||
|
||||
embed_ind = rearrange(embed_ind, '... -> (...)')
|
||||
misses = torch.bincount(embed_ind, minlength = self.codebook_size) == 0
|
||||
self.codebook_misses += misses
|
||||
|
||||
expired_codes = self.codebook_misses >= self.max_codebook_misses_before_expiry
|
||||
if not torch.any(expired_codes):
|
||||
return
|
||||
|
||||
self.codebook_misses.masked_fill_(expired_codes, 0)
|
||||
batch_samples = rearrange(batch_samples, '... d -> (...) d')
|
||||
self._codebook.replace(batch_samples, mask = expired_codes)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.project_in(x)
|
||||
|
||||
quantize, embed_ind = self._codebook(x)
|
||||
commit_loss = F.mse_loss(quantize.detach(), x)
|
||||
|
||||
if self.training:
|
||||
quantize = x + (quantize - x).detach()
|
||||
self.expire_codes_(embed_ind, x)
|
||||
|
||||
quantize = self.project_out(quantize)
|
||||
return quantize, embed_ind, commit_loss
|
Loading…
Reference in New Issue
Block a user