forked from mrq/DL-Art-School
4x spsr ref (not workin)
This commit is contained in:
parent
623f3b99b2
commit
0e859a8082
|
@ -470,3 +470,127 @@ class SwitchedSpsrWithRef(nn.Module):
|
||||||
val["switch_%i_specificity" % (i,)] = means[i]
|
val["switch_%i_specificity" % (i,)] = means[i]
|
||||||
val["switch_%i_histogram" % (i,)] = hists[i]
|
val["switch_%i_histogram" % (i,)] = hists[i]
|
||||||
return val
|
return val
|
||||||
|
|
||||||
|
|
||||||
|
class SwitchedSpsrWithRef4x(nn.Module):
|
||||||
|
def __init__(self, in_nc, out_nc, nf, xforms=8, upscale=4, init_temperature=10):
|
||||||
|
super(SwitchedSpsrWithRef4x, self).__init__()
|
||||||
|
n_upscale = int(math.log(upscale, 2))
|
||||||
|
|
||||||
|
# switch options
|
||||||
|
transformation_filters = nf
|
||||||
|
switch_filters = nf
|
||||||
|
self.transformation_counts = xforms
|
||||||
|
self.reference_processor = ReferenceImageBranch(transformation_filters)
|
||||||
|
multiplx_fn = functools.partial(ReferencingConvMultiplexer, transformation_filters, switch_filters, self.transformation_counts)
|
||||||
|
pretransform_fn = functools.partial(AdaInConvBlock, 512, transformation_filters, transformation_filters)
|
||||||
|
transform_fn = functools.partial(MultiConvBlock, transformation_filters, int(transformation_filters * 1.5),
|
||||||
|
transformation_filters, kernel_size=3, depth=3,
|
||||||
|
weight_init_factor=.1)
|
||||||
|
|
||||||
|
# Feature branch
|
||||||
|
self.model_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False)
|
||||||
|
self.sw1 = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||||
|
pre_transform_block=pretransform_fn, transform_block=transform_fn,
|
||||||
|
attention_norm=True,
|
||||||
|
transform_count=self.transformation_counts, init_temp=init_temperature,
|
||||||
|
add_scalable_noise_to_transforms=True)
|
||||||
|
self.sw2 = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||||
|
pre_transform_block=pretransform_fn, transform_block=transform_fn,
|
||||||
|
attention_norm=True,
|
||||||
|
transform_count=self.transformation_counts, init_temp=init_temperature,
|
||||||
|
add_scalable_noise_to_transforms=True)
|
||||||
|
self.feature_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=True, activation=False)
|
||||||
|
self.stage1_up_fea = UpconvBlock(nf, nf, block=ConvGnLelu, norm=False, activation=False, bias=False)
|
||||||
|
self.feature_hr_conv2 = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=False, bias=False)
|
||||||
|
|
||||||
|
# Grad branch
|
||||||
|
self.get_g_nopadding = ImageGradientNoPadding()
|
||||||
|
self.b_fea_conv = ConvGnLelu(in_nc, nf, kernel_size=3, norm=False, activation=False, bias=False)
|
||||||
|
mplex_grad = functools.partial(ReferencingConvMultiplexer, nf * 2, nf * 2, self.transformation_counts // 2)
|
||||||
|
self.sw_grad = ConfigurableSwitchComputer(transformation_filters, mplex_grad,
|
||||||
|
pre_transform_block=pretransform_fn, transform_block=transform_fn,
|
||||||
|
attention_norm=True,
|
||||||
|
transform_count=self.transformation_counts // 2, init_temp=init_temperature,
|
||||||
|
add_scalable_noise_to_transforms=True)
|
||||||
|
self.stage1_up_grad = UpconvBlock(nf, nf, block=ConvGnLelu, norm=False, activation=False, bias=False)
|
||||||
|
|
||||||
|
# Upsampling
|
||||||
|
self.grad_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=True, activation=True, bias=False)
|
||||||
|
self.grad_hr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=False, bias=False)
|
||||||
|
# Conv used to output grad branch shortcut.
|
||||||
|
self.grad_branch_output_conv = ConvGnLelu(nf, out_nc, kernel_size=1, norm=False, activation=False, bias=False)
|
||||||
|
|
||||||
|
# Conjoin branch.
|
||||||
|
transform_fn_cat = functools.partial(MultiConvBlock, transformation_filters * 2, int(transformation_filters * 1.5),
|
||||||
|
transformation_filters, kernel_size=3, depth=4,
|
||||||
|
weight_init_factor=.1)
|
||||||
|
pretransform_fn_cat = functools.partial(AdaInConvBlock, 512, transformation_filters * 2, transformation_filters * 2)
|
||||||
|
self._branch_pretrain_sw = ConfigurableSwitchComputer(transformation_filters, multiplx_fn,
|
||||||
|
pre_transform_block=pretransform_fn_cat, transform_block=transform_fn_cat,
|
||||||
|
attention_norm=True,
|
||||||
|
transform_count=self.transformation_counts, init_temp=init_temperature,
|
||||||
|
add_scalable_noise_to_transforms=True)
|
||||||
|
self.stage2_up_fea = UpconvBlock(nf, nf, block=ConvGnLelu, norm=False, activation=False, bias=False)
|
||||||
|
self.stage2_up_grad = UpconvBlock(nf, nf, block=ConvGnLelu, norm=False, activation=False, bias=False)
|
||||||
|
self.final_lr_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=True, activation=False)
|
||||||
|
self.final_hr_conv1 = ConvGnLelu(nf, nf, kernel_size=3, norm=True, activation=True, bias=False)
|
||||||
|
self.final_hr_conv2 = ConvGnLelu(nf, out_nc, kernel_size=3, norm=False, activation=False, bias=False)
|
||||||
|
self.switches = [self.sw1, self.sw2, self.sw_grad, self._branch_pretrain_sw]
|
||||||
|
self.attentions = None
|
||||||
|
self.init_temperature = init_temperature
|
||||||
|
self.final_temperature_step = 10000
|
||||||
|
|
||||||
|
def forward(self, x, ref, center_coord):
|
||||||
|
x_grad = self.get_g_nopadding(x)
|
||||||
|
ref = self.reference_processor(ref, center_coord)
|
||||||
|
x = self.model_fea_conv(x)
|
||||||
|
|
||||||
|
x1, a1 = self.sw1((x, ref), True)
|
||||||
|
x2, a2 = self.sw2((x1, ref), True)
|
||||||
|
x_fea = self.feature_lr_conv(x2)
|
||||||
|
x_fea = self.stage1_up_fea(x_fea)
|
||||||
|
x_fea = self.feature_hr_conv2(x_fea)
|
||||||
|
|
||||||
|
x_b_fea = self.b_fea_conv(x_grad)
|
||||||
|
x_grad, a3 = self.sw_grad((x_b_fea, ref), att_in=(torch.cat([x1, x_b_fea], dim=1), ref), output_attention_weights=True)
|
||||||
|
x_grad = self.grad_lr_conv(x_grad)
|
||||||
|
x_grad = self.stage1_up_grad(x_grad)
|
||||||
|
x_grad = self.grad_hr_conv(x_grad)
|
||||||
|
x_out_branch = self.stage2_up_grad(x_grad)
|
||||||
|
x_out_branch = self.grad_branch_output_conv(x_out_branch)
|
||||||
|
|
||||||
|
x__branch_pretrain_cat = torch.cat([x_grad, x_fea], dim=1)
|
||||||
|
x__branch_pretrain_cat, a4 = self._branch_pretrain_sw((x__branch_pretrain_cat, ref), att_in=(x_fea, ref), identity=x_fea, output_attention_weights=True)
|
||||||
|
x_out = self.final_lr_conv(x__branch_pretrain_cat)
|
||||||
|
x_out = self.stage2_up_fea(x_out)
|
||||||
|
x_out = self.final_hr_conv1(x_out)
|
||||||
|
x_out = self.final_hr_conv2(x_out)
|
||||||
|
|
||||||
|
self.attentions = [a1, a2, a3, a4]
|
||||||
|
|
||||||
|
return x_out_branch, x_out, x_grad
|
||||||
|
|
||||||
|
def set_temperature(self, temp):
|
||||||
|
[sw.set_temperature(temp) for sw in self.switches]
|
||||||
|
|
||||||
|
def update_for_step(self, step, experiments_path='.'):
|
||||||
|
if self.attentions:
|
||||||
|
temp = max(1, 1 + self.init_temperature *
|
||||||
|
(self.final_temperature_step - step) / self.final_temperature_step)
|
||||||
|
self.set_temperature(temp)
|
||||||
|
if step % 200 == 0:
|
||||||
|
output_path = os.path.join(experiments_path, "attention_maps", "a%i")
|
||||||
|
prefix = "attention_map_%i_%%i.png" % (step,)
|
||||||
|
[save_attention_to_image_rgb(output_path % (i,), self.attentions[i], self.transformation_counts, prefix, step) for i in range(len(self.attentions))]
|
||||||
|
|
||||||
|
def get_debug_values(self, step):
|
||||||
|
temp = self.switches[0].switch.temperature
|
||||||
|
mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions]
|
||||||
|
means = [i[0] for i in mean_hists]
|
||||||
|
hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists]
|
||||||
|
val = {"switch_temperature": temp}
|
||||||
|
for i in range(len(means)):
|
||||||
|
val["switch_%i_specificity" % (i,)] = means[i]
|
||||||
|
val["switch_%i_histogram" % (i,)] = hists[i]
|
||||||
|
return val
|
||||||
|
|
|
@ -126,6 +126,10 @@ def define_G(opt, net_key='network_G', scale=None):
|
||||||
xforms = opt_net['num_transforms'] if 'num_transforms' in opt_net.keys() else 8
|
xforms = opt_net['num_transforms'] if 'num_transforms' in opt_net.keys() else 8
|
||||||
netG = spsr.SwitchedSpsrWithRef(in_nc=3, out_nc=3, nf=opt_net['nf'], xforms=xforms, upscale=opt_net['scale'],
|
netG = spsr.SwitchedSpsrWithRef(in_nc=3, out_nc=3, nf=opt_net['nf'], xforms=xforms, upscale=opt_net['scale'],
|
||||||
init_temperature=opt_net['temperature'] if 'temperature' in opt_net.keys() else 10)
|
init_temperature=opt_net['temperature'] if 'temperature' in opt_net.keys() else 10)
|
||||||
|
elif which_model == "spsr_switched_with_ref4x":
|
||||||
|
xforms = opt_net['num_transforms'] if 'num_transforms' in opt_net.keys() else 8
|
||||||
|
netG = spsr.SwitchedSpsrWithRef4x(in_nc=3, out_nc=3, nf=opt_net['nf'], xforms=xforms, upscale=opt_net['scale'],
|
||||||
|
init_temperature=opt_net['temperature'] if 'temperature' in opt_net.keys() else 10)
|
||||||
|
|
||||||
# image corruption
|
# image corruption
|
||||||
elif which_model == 'HighToLowResNet':
|
elif which_model == 'HighToLowResNet':
|
||||||
|
|
Loading…
Reference in New Issue
Block a user