forked from mrq/DL-Art-School
Throw out the idea of conditioning on discrete codes. Oh well :(
This commit is contained in:
parent
62c8c5d93e
commit
0edc98f6c4
|
@ -190,8 +190,10 @@ class DiscreteVAE(nn.Module):
|
|||
arrange = 'b (h w) d -> b d h w'
|
||||
kwargs = {'h': h, 'w': w}
|
||||
image_embeds = rearrange(image_embeds, arrange, **kwargs)
|
||||
images = self.decoder(image_embeds)
|
||||
return images
|
||||
images = [image_embeds]
|
||||
for layer in self.decoder:
|
||||
images.append(layer(images[-1]))
|
||||
return images[-1], images[-2]
|
||||
|
||||
def infer(self, img):
|
||||
img = self.norm(img)
|
||||
|
|
|
@ -11,9 +11,9 @@ from utils.util import get_mask_from_lengths
|
|||
|
||||
|
||||
class DiscreteSpectrogramConditioningBlock(nn.Module):
|
||||
def __init__(self, discrete_codes, channels):
|
||||
def __init__(self, dvae_channels, channels):
|
||||
super().__init__()
|
||||
self.emb = nn.Embedding(discrete_codes, channels)
|
||||
self.emb = nn.Conv1d(dvae_channels, channels, kernel_size=1)
|
||||
self.norm = normalization(channels)
|
||||
self.act = nn.SiLU()
|
||||
self.intg = nn.Sequential(nn.Conv1d(channels*2, channels*2, kernel_size=1),
|
||||
|
@ -30,11 +30,10 @@ class DiscreteSpectrogramConditioningBlock(nn.Module):
|
|||
:param x: bxcxS waveform latent
|
||||
:param codes: bxN discrete codes, N <= S
|
||||
"""
|
||||
def forward(self, x, codes):
|
||||
_, c, S = x.shape
|
||||
b, N = codes.shape
|
||||
assert N <= S
|
||||
emb = self.emb(codes).permute(0,2,1)
|
||||
def forward(self, x, dvae_in):
|
||||
b, c, S = x.shape
|
||||
_, q, N = dvae_in.shape
|
||||
emb = self.emb(dvae_in)
|
||||
emb = nn.functional.interpolate(emb, size=(S,), mode='nearest')
|
||||
together = torch.cat([self.act(self.norm(x)), emb], dim=1)
|
||||
together = self.intg(together)
|
||||
|
@ -77,7 +76,7 @@ class DiffusionVocoderWithRef(nn.Module):
|
|||
model_channels,
|
||||
in_channels=1,
|
||||
out_channels=2, # mean and variance
|
||||
discrete_codes=8192,
|
||||
discrete_codes=512,
|
||||
dropout=0,
|
||||
# res 1, 2, 4, 8,16,32,64,128,256,512, 1K, 2K
|
||||
channel_mult= (1,1.5,2, 3, 4, 6, 8, 12, 16, 24, 32, 48),
|
||||
|
@ -339,7 +338,8 @@ def register_unet_diffusion_vocoder_with_ref(opt_net, opt):
|
|||
# Test for ~4 second audio clip at 22050Hz
|
||||
if __name__ == '__main__':
|
||||
clip = torch.randn(2, 1, 40960)
|
||||
spec = torch.randint(8192, (2, 40,))
|
||||
#spec = torch.randint(8192, (2, 40,))
|
||||
spec = torch.randn(8,512,160)
|
||||
cond = torch.randn(2, 3, 80, 173)
|
||||
ts = torch.LongTensor([555, 556])
|
||||
model = DiffusionVocoderWithRef(32, conditioning_inputs_provided=False)
|
||||
|
|
Loading…
Reference in New Issue
Block a user