forked from mrq/DL-Art-School
Allow diffusion model to be trained with masking tokens
This commit is contained in:
parent
798ed7730a
commit
0f3ca28e39
|
@ -115,7 +115,7 @@ class DiffusionTts(nn.Module):
|
|||
self,
|
||||
model_channels,
|
||||
in_channels=1,
|
||||
num_tokens=30,
|
||||
num_tokens=32,
|
||||
out_channels=2, # mean and variance
|
||||
dropout=0,
|
||||
# res 1, 2, 4, 8,16,32,64,128,256,512, 1K, 2K
|
||||
|
@ -135,6 +135,7 @@ class DiffusionTts(nn.Module):
|
|||
scale_factor=2,
|
||||
conditioning_inputs_provided=True,
|
||||
time_embed_dim_multiplier=4,
|
||||
nil_guidance_fwd_proportion=.3,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
|
@ -153,6 +154,8 @@ class DiffusionTts(nn.Module):
|
|||
self.num_head_channels = num_head_channels
|
||||
self.num_heads_upsample = num_heads_upsample
|
||||
self.dims = dims
|
||||
self.nil_guidance_fwd_proportion = nil_guidance_fwd_proportion
|
||||
self.mask_token_id = num_tokens
|
||||
|
||||
padding = 1 if kernel_size == 3 else 2
|
||||
|
||||
|
@ -183,7 +186,7 @@ class DiffusionTts(nn.Module):
|
|||
|
||||
for level, (mult, num_blocks) in enumerate(zip(channel_mult, num_res_blocks)):
|
||||
if ds in token_conditioning_resolutions:
|
||||
token_conditioning_block = nn.Embedding(num_tokens, ch)
|
||||
token_conditioning_block = nn.Embedding(num_tokens+1, ch)
|
||||
token_conditioning_block.weight.data.normal_(mean=0.0, std=.02)
|
||||
self.input_blocks.append(token_conditioning_block)
|
||||
token_conditioning_blocks.append(token_conditioning_block)
|
||||
|
@ -286,6 +289,24 @@ class DiffusionTts(nn.Module):
|
|||
zero_module(conv_nd(dims, model_channels, out_channels, kernel_size, padding=padding)),
|
||||
)
|
||||
|
||||
def load_state_dict(self, state_dict: 'OrderedDict[str, Tensor]',
|
||||
strict: bool = True):
|
||||
# Temporary hack to allow the addition of nil-guidance token embeddings to the existing guidance embeddings.
|
||||
lsd = self.state_dict()
|
||||
revised = 0
|
||||
for i, blk in enumerate(self.input_blocks):
|
||||
if isinstance(blk, nn.Embedding):
|
||||
key = f'input_blocks.{i}.weight'
|
||||
if state_dict[key].shape[0] != lsd[key].shape[0]:
|
||||
t = torch.randn_like(lsd[key]) * .02
|
||||
t[:state_dict[key].shape[0]] = state_dict[key]
|
||||
state_dict[key] = t
|
||||
revised += 1
|
||||
print(f"Loaded experimental unet_diffusion_net with {revised} modifications.")
|
||||
return super().load_state_dict(state_dict, strict)
|
||||
|
||||
|
||||
|
||||
def forward(self, x, timesteps, tokens, conditioning_input=None):
|
||||
"""
|
||||
Apply the model to an input batch.
|
||||
|
@ -307,11 +328,16 @@ class DiffusionTts(nn.Module):
|
|||
hs = []
|
||||
emb1 = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
||||
if self.conditioning_enabled:
|
||||
emb2 = self.contextual_embedder(conditioning_input)
|
||||
emb = emb1 + emb2
|
||||
actual_cond = self.contextual_embedder(conditioning_input)
|
||||
emb = emb1 + actual_cond
|
||||
else:
|
||||
emb = emb1
|
||||
|
||||
# Mask out guidance tokens for un-guided diffusion.
|
||||
if self.nil_guidance_fwd_proportion > 0:
|
||||
token_mask = torch.rand(tokens.shape, device=tokens.device) < self.nil_guidance_fwd_proportion
|
||||
tokens = torch.where(token_mask, self.mask_token_id, tokens)
|
||||
|
||||
h = x.type(self.dtype)
|
||||
for k, module in enumerate(self.input_blocks):
|
||||
if isinstance(module, nn.Embedding):
|
||||
|
@ -370,13 +396,15 @@ def register_diffusion_tts_experimental(opt_net, opt):
|
|||
|
||||
# Test for ~4 second audio clip at 22050Hz
|
||||
if __name__ == '__main__':
|
||||
clip = torch.randn(2, 1, 86016)
|
||||
tok = torch.randint(0,30, (2,388))
|
||||
cond = torch.randn(2, 1, 44000)
|
||||
ts = torch.LongTensor([555, 556])
|
||||
clip = torch.randn(4, 1, 86016)
|
||||
tok = torch.randint(0,30, (4,388))
|
||||
cond = torch.randn(4, 1, 44000)
|
||||
ts = torch.LongTensor([555, 556, 600, 600])
|
||||
model = DiffusionTts(64, channel_mult=[1,1.5,2, 3, 4, 6, 8, 8, 8, 8], num_res_blocks=[2, 2, 2, 2, 2, 2, 2, 4, 4, 4],
|
||||
token_conditioning_resolutions=[1,4,16,64], attention_resolutions=[256,512], num_heads=4, kernel_size=3,
|
||||
scale_factor=2, conditioning_inputs_provided=True, time_embed_dim_multiplier=4)
|
||||
model(clip, ts, tok, cond)
|
||||
|
||||
p, r = model.benchmark(clip, ts, tok, cond)
|
||||
p = {k: v / 1000000000 for k, v in p.items()}
|
||||
p = sorted(p.items(), key=operator.itemgetter(1))
|
||||
|
|
Loading…
Reference in New Issue
Block a user