forked from mrq/DL-Art-School
Merge remote-tracking branch 'origin/gan_lab' into gan_lab
This commit is contained in:
commit
10da206db6
|
@ -30,7 +30,9 @@ class ExtensibleTrainer(BaseModel):
|
|||
self.env = {'device': self.device,
|
||||
'rank': self.rank,
|
||||
'opt': opt,
|
||||
'step': 0}
|
||||
'step': 0,
|
||||
'dist': opt['dist']
|
||||
}
|
||||
if opt['path']['models'] is not None:
|
||||
self.env['base_path'] = os.path.join(opt['path']['models'])
|
||||
|
||||
|
|
|
@ -94,12 +94,12 @@ class SPSRNet(nn.Module):
|
|||
|
||||
n_upscale = int(math.log(upscale, 2))
|
||||
|
||||
self.scale=n_upscale
|
||||
self.scale=upscale
|
||||
if upscale == 3:
|
||||
n_upscale = 1
|
||||
|
||||
fea_conv = ConvGnLelu(in_nc, nf//2, kernel_size=7, norm=False, activation=False)
|
||||
self.ref_conv = ConvGnLelu(in_nc, nf//2, stride=n_upscale, kernel_size=7, norm=False, activation=False)
|
||||
self.ref_conv = ConvGnLelu(in_nc, nf//2, stride=upscale, kernel_size=7, norm=False, activation=False)
|
||||
self.join_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=False)
|
||||
rb_blocks = [RRDB(nf) for _ in range(nb)]
|
||||
|
||||
|
@ -118,7 +118,7 @@ class SPSRNet(nn.Module):
|
|||
*upsampler, self.HR_conv0_new)
|
||||
|
||||
self.b_fea_conv = ConvGnLelu(in_nc, nf//2, kernel_size=3, norm=False, activation=False)
|
||||
self.b_ref_conv = ConvGnLelu(in_nc, nf//2, stride=n_upscale, kernel_size=3, norm=False, activation=False)
|
||||
self.b_ref_conv = ConvGnLelu(in_nc, nf//2, stride=upscale, kernel_size=3, norm=False, activation=False)
|
||||
self.b_join_conv = ConvGnLelu(nf, nf, kernel_size=3, norm=False, activation=False)
|
||||
|
||||
self.b_concat_1 = ConvGnLelu(2 * nf, nf, kernel_size=3, norm=False, activation=False)
|
||||
|
@ -665,4 +665,4 @@ class SwitchedSpsr(nn.Module):
|
|||
for i in range(len(means)):
|
||||
val["switch_%i_specificity" % (i,)] = means[i]
|
||||
val["switch_%i_histogram" % (i,)] = hists[i]
|
||||
return val
|
||||
return val
|
||||
|
|
|
@ -126,49 +126,48 @@ class ConfigurableStep(Module):
|
|||
self.env['current_step_optimizers'] = self.optimizers
|
||||
self.env['training'] = train
|
||||
|
||||
with self.get_network_for_name(self.get_networks_trained()[0]).join():
|
||||
# Inject in any extra dependencies.
|
||||
for inj in self.injectors:
|
||||
# Don't do injections tagged with eval unless we are not in train mode.
|
||||
if train and 'eval' in inj.opt.keys() and inj.opt['eval']:
|
||||
continue
|
||||
# Likewise, don't do injections tagged with train unless we are not in eval.
|
||||
if not train and 'train' in inj.opt.keys() and inj.opt['train']:
|
||||
continue
|
||||
# Don't do injections tagged with 'after' or 'before' when we are out of spec.
|
||||
if 'after' in inj.opt.keys() and self.env['step'] < inj.opt['after'] or \
|
||||
'before' in inj.opt.keys() and self.env['step'] > inj.opt['before']:
|
||||
continue
|
||||
injected = inj(local_state)
|
||||
local_state.update(injected)
|
||||
new_state.update(injected)
|
||||
# Inject in any extra dependencies.
|
||||
for inj in self.injectors:
|
||||
# Don't do injections tagged with eval unless we are not in train mode.
|
||||
if train and 'eval' in inj.opt.keys() and inj.opt['eval']:
|
||||
continue
|
||||
# Likewise, don't do injections tagged with train unless we are not in eval.
|
||||
if not train and 'train' in inj.opt.keys() and inj.opt['train']:
|
||||
continue
|
||||
# Don't do injections tagged with 'after' or 'before' when we are out of spec.
|
||||
if 'after' in inj.opt.keys() and self.env['step'] < inj.opt['after'] or \
|
||||
'before' in inj.opt.keys() and self.env['step'] > inj.opt['before']:
|
||||
continue
|
||||
injected = inj(local_state)
|
||||
local_state.update(injected)
|
||||
new_state.update(injected)
|
||||
|
||||
if train and len(self.losses) > 0:
|
||||
# Finally, compute the losses.
|
||||
total_loss = 0
|
||||
for loss_name, loss in self.losses.items():
|
||||
# Some losses only activate after a set number of steps. For example, proto-discriminator losses can
|
||||
# be very disruptive to a generator.
|
||||
if 'after' in loss.opt.keys() and loss.opt['after'] > self.env['step']:
|
||||
continue
|
||||
l = loss(self.training_net, local_state)
|
||||
total_loss += l * self.weights[loss_name]
|
||||
# Record metrics.
|
||||
if isinstance(l, torch.Tensor):
|
||||
self.loss_accumulator.add_loss(loss_name, l)
|
||||
for n, v in loss.extra_metrics():
|
||||
self.loss_accumulator.add_loss("%s_%s" % (loss_name, n), v)
|
||||
loss.clear_metrics()
|
||||
if train and len(self.losses) > 0:
|
||||
# Finally, compute the losses.
|
||||
total_loss = 0
|
||||
for loss_name, loss in self.losses.items():
|
||||
# Some losses only activate after a set number of steps. For example, proto-discriminator losses can
|
||||
# be very disruptive to a generator.
|
||||
if 'after' in loss.opt.keys() and loss.opt['after'] > self.env['step']:
|
||||
continue
|
||||
l = loss(self.training_net, local_state)
|
||||
total_loss += l * self.weights[loss_name]
|
||||
# Record metrics.
|
||||
if isinstance(l, torch.Tensor):
|
||||
self.loss_accumulator.add_loss(loss_name, l)
|
||||
for n, v in loss.extra_metrics():
|
||||
self.loss_accumulator.add_loss("%s_%s" % (loss_name, n), v)
|
||||
loss.clear_metrics()
|
||||
|
||||
# In some cases, the loss could not be set (e.g. all losses have 'after')
|
||||
if isinstance(total_loss, torch.Tensor):
|
||||
self.loss_accumulator.add_loss("%s_total" % (self.get_training_network_name(),), total_loss)
|
||||
# Scale the loss down by the accumulation factor.
|
||||
total_loss = total_loss / self.env['mega_batch_factor']
|
||||
# In some cases, the loss could not be set (e.g. all losses have 'after')
|
||||
if isinstance(total_loss, torch.Tensor):
|
||||
self.loss_accumulator.add_loss("%s_total" % (self.get_training_network_name(),), total_loss)
|
||||
# Scale the loss down by the accumulation factor.
|
||||
total_loss = total_loss / self.env['mega_batch_factor']
|
||||
|
||||
# Get dem grads!
|
||||
self.scaler.scale(total_loss).backward()
|
||||
self.grads_generated = True
|
||||
# Get dem grads!
|
||||
self.scaler.scale(total_loss).backward()
|
||||
self.grads_generated = True
|
||||
|
||||
# Detach all state variables. Within the step, gradients can flow. Once these variables leave the step
|
||||
# we must release the gradients.
|
||||
|
|
|
@ -15,15 +15,29 @@ import yaml
|
|||
import train
|
||||
import utils.options as option
|
||||
from utils.util import OrderedYaml
|
||||
import torch
|
||||
|
||||
|
||||
def main(master_opt, launcher):
|
||||
trainers = []
|
||||
all_networks = {}
|
||||
shared_networks = []
|
||||
if launcher != 'none':
|
||||
train.init_dist('nccl')
|
||||
for i, sub_opt in enumerate(master_opt['trainer_options']):
|
||||
sub_opt_parsed = option.parse(sub_opt, is_train=True)
|
||||
trainer = train.Trainer()
|
||||
|
||||
#### distributed training settings
|
||||
if launcher == 'none': # disabled distributed training
|
||||
sub_opt_parsed['dist'] = False
|
||||
trainer.rank = -1
|
||||
print('Disabled distributed training.')
|
||||
else:
|
||||
sub_opt_parsed['dist'] = True
|
||||
trainer.world_size = torch.distributed.get_world_size()
|
||||
trainer.rank = torch.distributed.get_rank()
|
||||
|
||||
trainer.init(sub_opt_parsed, launcher, all_networks)
|
||||
train_gen = trainer.create_training_generator(i)
|
||||
model = next(train_gen)
|
||||
|
@ -44,6 +58,7 @@ if __name__ == '__main__':
|
|||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_imgset_chained_structured_trans_invariance.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
args = parser.parse_args()
|
||||
|
||||
Loader, Dumper = OrderedYaml()
|
||||
|
|
|
@ -13,43 +13,26 @@ from data import create_dataloader, create_dataset
|
|||
from models.ExtensibleTrainer import ExtensibleTrainer
|
||||
from time import time
|
||||
|
||||
class Trainer:
|
||||
def init_dist(self, backend, **kwargs):
|
||||
# These packages have globals that screw with Windows, so only import them if needed.
|
||||
import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
def init_dist(backend, **kwargs):
|
||||
# These packages have globals that screw with Windows, so only import them if needed.
|
||||
import torch.distributed as dist
|
||||
import torch.multiprocessing as mp
|
||||
|
||||
"""initialization for distributed training"""
|
||||
if mp.get_start_method(allow_none=True) != 'spawn':
|
||||
mp.set_start_method('spawn')
|
||||
self.rank = int(os.environ['RANK'])
|
||||
num_gpus = torch.cuda.device_count()
|
||||
torch.cuda.set_device(self.rank % num_gpus)
|
||||
dist.init_process_group(backend=backend, **kwargs)
|
||||
"""initialization for distributed training"""
|
||||
if mp.get_start_method(allow_none=True) != 'spawn':
|
||||
mp.set_start_method('spawn')
|
||||
rank = int(os.environ['RANK'])
|
||||
num_gpus = torch.cuda.device_count()
|
||||
torch.cuda.set_device(rank % num_gpus)
|
||||
dist.init_process_group(backend=backend, **kwargs)
|
||||
|
||||
class Trainer:
|
||||
|
||||
def init(self, opt, launcher, all_networks={}):
|
||||
self._profile = False
|
||||
self.val_compute_psnr = opt['eval']['compute_psnr'] if 'compute_psnr' in opt['eval'] else True
|
||||
self.val_compute_fea = opt['eval']['compute_fea'] if 'compute_fea' in opt['eval'] else True
|
||||
|
||||
#### distributed training settings
|
||||
if len(opt['gpu_ids']) == 1 and torch.cuda.device_count() > 1:
|
||||
gpu = input(
|
||||
'I noticed you have multiple GPUs. Starting two jobs on the same GPU sucks. Please confirm which GPU'
|
||||
'you want to use. Press enter to use the specified one [%s]' % (opt['gpu_ids']))
|
||||
if gpu:
|
||||
opt['gpu_ids'] = [int(gpu)]
|
||||
if launcher == 'none': # disabled distributed training
|
||||
opt['dist'] = False
|
||||
self.rank = -1
|
||||
print('Disabled distributed training.')
|
||||
|
||||
else:
|
||||
opt['dist'] = True
|
||||
self.init_dist('nccl')
|
||||
world_size = torch.distributed.get_world_size()
|
||||
self.rank = torch.distributed.get_rank()
|
||||
|
||||
#### loading resume state if exists
|
||||
if opt['path'].get('resume_state', None):
|
||||
# distributed resuming: all load into default GPU
|
||||
|
@ -117,7 +100,7 @@ class Trainer:
|
|||
total_iters = int(opt['train']['niter'])
|
||||
self.total_epochs = int(math.ceil(total_iters / train_size))
|
||||
if opt['dist']:
|
||||
self.train_sampler = DistIterSampler(self.train_set, world_size, self.rank, dataset_ratio)
|
||||
self.train_sampler = DistIterSampler(self.train_set, self.world_size, self.rank, dataset_ratio)
|
||||
self.total_epochs = int(math.ceil(total_iters / (train_size * dataset_ratio)))
|
||||
else:
|
||||
self.train_sampler = None
|
||||
|
@ -288,5 +271,18 @@ if __name__ == '__main__':
|
|||
args = parser.parse_args()
|
||||
opt = option.parse(args.opt, is_train=True)
|
||||
trainer = Trainer()
|
||||
|
||||
#### distributed training settings
|
||||
if args.launcher == 'none': # disabled distributed training
|
||||
opt['dist'] = False
|
||||
trainer.rank = -1
|
||||
print('Disabled distributed training.')
|
||||
|
||||
else:
|
||||
opt['dist'] = True
|
||||
init_dist('nccl')
|
||||
trainer.world_size = torch.distributed.get_world_size()
|
||||
trainer.rank = torch.distributed.get_rank()
|
||||
|
||||
trainer.init(opt, args.launcher)
|
||||
trainer.do_training()
|
||||
|
|
Loading…
Reference in New Issue
Block a user