forked from mrq/DL-Art-School
update tfd11
This commit is contained in:
parent
5c6c8f6904
commit
11e70dde14
|
@ -220,15 +220,17 @@ class TransformerDiffusion(nn.Module):
|
|||
|
||||
|
||||
class TransformerDiffusionWithQuantizer(nn.Module):
|
||||
def __init__(self, quantizer_dims=[1024], freeze_quantizer_until=20000, **kwargs):
|
||||
def __init__(self, quantizer_dims=[1024], quantizer_codebook_size=256, quantizer_codebook_groups=2,
|
||||
freeze_quantizer_until=20000, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
self.internal_step = 0
|
||||
self.freeze_quantizer_until = freeze_quantizer_until
|
||||
self.diff = TransformerDiffusion(**kwargs)
|
||||
self.quantizer = MusicQuantizer2(inp_channels=kwargs['in_channels'], inner_dim=quantizer_dims,
|
||||
codevector_dim=quantizer_dims[0], codebook_size=256,
|
||||
codebook_groups=2, max_gumbel_temperature=4, min_gumbel_temperature=.5)
|
||||
codevector_dim=quantizer_dims[0], codebook_size=quantizer_codebook_size,
|
||||
codebook_groups=quantizer_codebook_groups, max_gumbel_temperature=4,
|
||||
min_gumbel_temperature=.5)
|
||||
self.quantizer.quantizer.temperature = self.quantizer.min_gumbel_temperature
|
||||
del self.quantizer.up
|
||||
|
||||
|
@ -277,7 +279,7 @@ class TransformerDiffusionWithQuantizer(nn.Module):
|
|||
groups = {
|
||||
'blk1_attention_layers': attn1,
|
||||
'blk2_attention_layers': attn2,
|
||||
'blk2_attention_layers': attn3,
|
||||
'blk3_attention_layers': attn3,
|
||||
'attention_layers': attn1 + attn2 + attn3,
|
||||
'blk1_ff_layers': ff1,
|
||||
'blk2_ff_layers': ff2,
|
||||
|
@ -356,15 +358,30 @@ def test_quant_model():
|
|||
clip = torch.randn(2, 256, 400)
|
||||
cond = torch.randn(2, 256, 400)
|
||||
ts = torch.LongTensor([600, 600])
|
||||
|
||||
"""
|
||||
# For music:
|
||||
model = TransformerDiffusionWithQuantizer(in_channels=256, model_channels=1024,
|
||||
prenet_channels=1024, num_heads=4,
|
||||
input_vec_dim=1024, num_layers=20, prenet_layers=6,
|
||||
dropout=.1)
|
||||
|
||||
quant_weights = torch.load('D:\\dlas\\experiments\\train_music_quant_r4\\models\\5000_generator.pth')
|
||||
model.quantizer.load_state_dict(quant_weights, strict=False)
|
||||
|
||||
torch.save(model.state_dict(), 'sample.pth')
|
||||
"""
|
||||
|
||||
# For TTS:
|
||||
model = TransformerDiffusionWithQuantizer(in_channels=256, model_channels=1024,
|
||||
prenet_channels=1024, num_heads=4,
|
||||
input_vec_dim=1024, num_layers=12, prenet_layers=10,
|
||||
quantizer_dims=[1024,768,512], quantizer_codebook_size=64,
|
||||
quantizer_codebook_groups=4,
|
||||
dropout=.1)
|
||||
quant_weights = torch.load('X:\\dlas\\experiments\\train_tts_quant_64\\models\\15500_generator.pth')
|
||||
model.quantizer.load_state_dict(quant_weights, strict=False)
|
||||
torch.save(model.state_dict(), 'sample.pth')
|
||||
|
||||
|
||||
print_network(model)
|
||||
o = model(clip, ts, clip, cond)
|
||||
model.get_grad_norm_parameter_groups()
|
||||
|
|
Loading…
Reference in New Issue
Block a user