forked from mrq/DL-Art-School
Get rid of skip layers from vgg disc
This commit is contained in:
parent
c540244789
commit
1596a98493
|
@ -12,12 +12,12 @@ class Discriminator_VGG_128(nn.Module):
|
||||||
self.conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False)
|
self.conv0_1 = nn.Conv2d(nf, nf, 4, 2, 1, bias=False)
|
||||||
self.bn0_1 = nn.BatchNorm2d(nf, affine=True)
|
self.bn0_1 = nn.BatchNorm2d(nf, affine=True)
|
||||||
# [64, 64, 64]
|
# [64, 64, 64]
|
||||||
self.conv1_0 = nn.Conv2d(nf + 3, nf * 2, 3, 1, 1, bias=False)
|
self.conv1_0 = nn.Conv2d(nf, nf * 2, 3, 1, 1, bias=False)
|
||||||
self.bn1_0 = nn.BatchNorm2d(nf * 2, affine=True)
|
self.bn1_0 = nn.BatchNorm2d(nf * 2, affine=True)
|
||||||
self.conv1_1 = nn.Conv2d(nf * 2, nf * 2, 4, 2, 1, bias=False)
|
self.conv1_1 = nn.Conv2d(nf * 2, nf * 2, 4, 2, 1, bias=False)
|
||||||
self.bn1_1 = nn.BatchNorm2d(nf * 2, affine=True)
|
self.bn1_1 = nn.BatchNorm2d(nf * 2, affine=True)
|
||||||
# [128, 32, 32]
|
# [128, 32, 32]
|
||||||
self.conv2_0 = nn.Conv2d(nf * 2 + 3, nf * 4, 3, 1, 1, bias=False)
|
self.conv2_0 = nn.Conv2d(nf * 2, nf * 4, 3, 1, 1, bias=False)
|
||||||
self.bn2_0 = nn.BatchNorm2d(nf * 4, affine=True)
|
self.bn2_0 = nn.BatchNorm2d(nf * 4, affine=True)
|
||||||
self.conv2_1 = nn.Conv2d(nf * 4, nf * 4, 4, 2, 1, bias=False)
|
self.conv2_1 = nn.Conv2d(nf * 4, nf * 4, 4, 2, 1, bias=False)
|
||||||
self.bn2_1 = nn.BatchNorm2d(nf * 4, affine=True)
|
self.bn2_1 = nn.BatchNorm2d(nf * 4, affine=True)
|
||||||
|
@ -43,11 +43,11 @@ class Discriminator_VGG_128(nn.Module):
|
||||||
fea = self.lrelu(self.conv0_0(x))
|
fea = self.lrelu(self.conv0_0(x))
|
||||||
fea = self.lrelu(self.bn0_1(self.conv0_1(fea)))
|
fea = self.lrelu(self.bn0_1(self.conv0_1(fea)))
|
||||||
|
|
||||||
fea = torch.cat([fea, skip_med], dim=1)
|
#fea = torch.cat([fea, skip_med], dim=1)
|
||||||
fea = self.lrelu(self.bn1_0(self.conv1_0(fea)))
|
fea = self.lrelu(self.bn1_0(self.conv1_0(fea)))
|
||||||
fea = self.lrelu(self.bn1_1(self.conv1_1(fea)))
|
fea = self.lrelu(self.bn1_1(self.conv1_1(fea)))
|
||||||
|
|
||||||
fea = torch.cat([fea, skip_lo], dim=1)
|
#fea = torch.cat([fea, skip_lo], dim=1)
|
||||||
fea = self.lrelu(self.bn2_0(self.conv2_0(fea)))
|
fea = self.lrelu(self.bn2_0(self.conv2_0(fea)))
|
||||||
fea = self.lrelu(self.bn2_1(self.conv2_1(fea)))
|
fea = self.lrelu(self.bn2_1(self.conv2_1(fea)))
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user