forked from mrq/DL-Art-School
Allow bi-directional clipping
This commit is contained in:
parent
894d245062
commit
15d9517e26
|
@ -40,8 +40,9 @@ class VoiceCLIP(nn.Module):
|
||||||
speech_enc_depth=6,
|
speech_enc_depth=6,
|
||||||
speech_heads=8,
|
speech_heads=8,
|
||||||
speech_seq_len=250,
|
speech_seq_len=250,
|
||||||
text_mask_percentage: 0,
|
text_mask_percentage=0,
|
||||||
wav_token_compression = 1024,
|
voice_mask_percentage=0,
|
||||||
|
wav_token_compression=1024,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.text_emb = nn.Embedding(num_text_tokens, dim_text)
|
self.text_emb = nn.Embedding(num_text_tokens, dim_text)
|
||||||
|
@ -58,6 +59,7 @@ class VoiceCLIP(nn.Module):
|
||||||
|
|
||||||
self.temperature = nn.Parameter(torch.tensor(1.))
|
self.temperature = nn.Parameter(torch.tensor(1.))
|
||||||
self.text_mask_percentage = text_mask_percentage
|
self.text_mask_percentage = text_mask_percentage
|
||||||
|
self.voice_mask_percentage = voice_mask_percentage
|
||||||
self.wav_token_compression = wav_token_compression
|
self.wav_token_compression = wav_token_compression
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
|
@ -76,7 +78,12 @@ class VoiceCLIP(nn.Module):
|
||||||
speech_tokens = speech_tokens[:, :max_mel_len]
|
speech_tokens = speech_tokens[:, :max_mel_len]
|
||||||
|
|
||||||
b, device = text.shape[0], text.device
|
b, device = text.shape[0], text.device
|
||||||
text_mask = torch.rand_like(text.float()) > self.text_mask_percentage
|
if self.training:
|
||||||
|
text_mask = torch.rand_like(text.float()) > self.text_mask_percentage
|
||||||
|
voice_mask = torch.rand_like(speech_tokens.float()) > self.voice_mask_percentage
|
||||||
|
else:
|
||||||
|
text_mask = torch.ones_like(text.float()).bool()
|
||||||
|
voice_mask = torch.ones_like(speech_tokens.float()).bool()
|
||||||
|
|
||||||
text_emb = self.text_emb(text)
|
text_emb = self.text_emb(text)
|
||||||
text_emb += self.text_pos_emb(torch.arange(text.shape[1], device=device))
|
text_emb += self.text_pos_emb(torch.arange(text.shape[1], device=device))
|
||||||
|
@ -85,14 +92,10 @@ class VoiceCLIP(nn.Module):
|
||||||
speech_emb += self.speech_pos_emb(torch.arange(speech_emb.shape[1], device=device))
|
speech_emb += self.speech_pos_emb(torch.arange(speech_emb.shape[1], device=device))
|
||||||
|
|
||||||
enc_text = self.text_transformer(text_emb, mask=text_mask)
|
enc_text = self.text_transformer(text_emb, mask=text_mask)
|
||||||
enc_speech = self.speech_transformer(speech_emb)
|
enc_speech = self.speech_transformer(speech_emb, mask=voice_mask)
|
||||||
|
|
||||||
if self.text_mask_percentage > 0:
|
text_latents = masked_mean(enc_text, text_mask, dim=1)
|
||||||
text_latents = masked_mean(enc_text, text_mask, dim=1)
|
speech_latents = masked_mean(enc_speech, voice_mask, dim=1)
|
||||||
else:
|
|
||||||
text_latents = enc_text.mean(dim=1)
|
|
||||||
|
|
||||||
speech_latents = enc_speech.mean(dim=1)
|
|
||||||
|
|
||||||
text_latents = self.to_text_latent(text_latents)
|
text_latents = self.to_text_latent(text_latents)
|
||||||
speech_latents = self.to_speech_latent(speech_latents)
|
speech_latents = self.to_speech_latent(speech_latents)
|
||||||
|
@ -117,7 +120,9 @@ def register_voice_clip(opt_net, opt):
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
clip = VoiceCLIP(text_mask_percentage=.2)
|
clip = VoiceCLIP(text_mask_percentage=.2, voice_mask_percentage=.2)
|
||||||
clip(torch.randint(0,256,(2,120)),
|
clip(torch.randint(0,256,(2,120)),
|
||||||
|
torch.tensor([50,100]),
|
||||||
torch.randint(0,8192,(2,250)),
|
torch.randint(0,8192,(2,250)),
|
||||||
|
torch.tensor([101,102]),
|
||||||
return_loss=True)
|
return_loss=True)
|
Loading…
Reference in New Issue
Block a user