forked from mrq/DL-Art-School
Attempt to fix nan
This commit is contained in:
parent
eda796985b
commit
1c574c5bd1
|
@ -158,6 +158,7 @@ class DropoutNorm(SwitchNorm):
|
|||
|
||||
# Compute the dropout probabilities. This module is a no-op before the accumulator is initialized.
|
||||
if self.accumulator_filled > 0:
|
||||
with torch.no_grad():
|
||||
probs = torch.mean(self.accumulator, dim=0) * self.dropout_rate
|
||||
bs, br = x.shape[:2]
|
||||
drop = torch.rand((bs, br), device=x.device) > probs.unsqueeze(0)
|
||||
|
@ -172,7 +173,7 @@ class DropoutNorm(SwitchNorm):
|
|||
class HardRoutingGate(nn.Module):
|
||||
def __init__(self, breadth, dropout_rate=.8):
|
||||
super().__init__()
|
||||
self.norm = DropoutNorm(breadth, dropout_rate, accumulator_size=2)
|
||||
self.norm = DropoutNorm(breadth, dropout_rate, accumulator_size=128)
|
||||
|
||||
def forward(self, x):
|
||||
soft = self.norm(nn.functional.softmax(x, dim=1))
|
||||
|
|
Loading…
Reference in New Issue
Block a user