forked from mrq/DL-Art-School
De-specify fast-paired-dataset
This commit is contained in:
parent
2b36ca5f8e
commit
1d30d79e34
|
@ -75,6 +75,12 @@ def create_dataset(dataset_opt, return_collate=False):
|
|||
default_params = create_hparams()
|
||||
default_params.update(dataset_opt)
|
||||
dataset_opt = munchify(default_params)
|
||||
elif mode == 'fast_paired_voice_audio':
|
||||
from data.audio.fast_paired_dataset import FastPairedVoiceDataset as D
|
||||
from models.tacotron2.hparams import create_hparams
|
||||
default_params = create_hparams()
|
||||
default_params.update(dataset_opt)
|
||||
dataset_opt = munchify(default_params)
|
||||
elif mode == 'gpt_tts':
|
||||
from data.audio.gpt_tts_dataset import GptTtsDataset as D
|
||||
from data.audio.gpt_tts_dataset import GptTtsCollater as C
|
||||
|
@ -100,7 +106,7 @@ def create_dataset(dataset_opt, return_collate=False):
|
|||
|
||||
def get_dataset_debugger(dataset_opt):
|
||||
mode = dataset_opt['mode']
|
||||
if mode == 'paired_voice_audio':
|
||||
if mode == 'paired_voice_audio' or mode == 'fast_paired_voice_audio':
|
||||
from data.audio.paired_voice_audio_dataset import PairedVoiceDebugger
|
||||
return PairedVoiceDebugger()
|
||||
return None
|
|
@ -9,23 +9,13 @@ import torch.utils.data
|
|||
import torchaudio
|
||||
from tqdm import tqdm
|
||||
|
||||
from data.audio.paired_voice_audio_dataset import CharacterTokenizer
|
||||
from data.audio.unsupervised_audio_dataset import load_audio, load_similar_clips
|
||||
from models.tacotron2.taco_utils import load_filepaths_and_text
|
||||
from models.tacotron2.text import text_to_sequence, sequence_to_text
|
||||
from utils.util import opt_get
|
||||
|
||||
|
||||
def parse_libri(line, base_path, split="|"):
|
||||
fpt = line.strip().split(split)
|
||||
fpt[0] = os.path.join(base_path, fpt[0])
|
||||
return fpt
|
||||
|
||||
|
||||
def parse_tsv(line, base_path):
|
||||
fpt = line.strip().split('\t')
|
||||
return os.path.join(base_path, f'{fpt[1]}'), fpt[0]
|
||||
|
||||
|
||||
def parse_tsv_aligned_codes(line, base_path):
|
||||
fpt = line.strip().split('\t')
|
||||
def convert_string_list_to_tensor(strlist):
|
||||
|
@ -38,27 +28,19 @@ def parse_tsv_aligned_codes(line, base_path):
|
|||
return os.path.join(base_path, f'{fpt[1]}'), fpt[0], convert_string_list_to_tensor(fpt[2])
|
||||
|
||||
|
||||
def parse_mozilla_cv(line, base_path):
|
||||
components = line.strip().split('\t')
|
||||
return os.path.join(base_path, f'clips/{components[1]}'), components[2]
|
||||
class FastPairedVoiceDataset(torch.utils.data.Dataset):
|
||||
"""
|
||||
This dataset is derived from paired_voice_audio, but it only supports loading from TSV files generated from the
|
||||
ocotillo transcription engine, which includes alignment codes. To support the vastly larger TSV files, this dataset
|
||||
uses an indexing mechanism which randomly selects offsets within the translation file to seek to. The data returned
|
||||
is relative to these offsets.
|
||||
|
||||
In practice, this means two things:
|
||||
1) Index {i} of this dataset means nothing: fetching from the same index will almost always return different data.
|
||||
2) This dataset has a slight bias for items with longer text or longer filenames.
|
||||
|
||||
def parse_voxpopuli(line, base_path):
|
||||
line = line.strip().split('\t')
|
||||
file, raw_text, norm_text, speaker_id, split, gender = line
|
||||
year = file[:4]
|
||||
return os.path.join(base_path, year, f'{file}.ogg.wav'), raw_text
|
||||
|
||||
|
||||
class CharacterTokenizer:
|
||||
def encode(self, txt):
|
||||
return text_to_sequence(txt, ['english_cleaners'])
|
||||
|
||||
def decode(self, seq):
|
||||
return sequence_to_text(seq)
|
||||
|
||||
|
||||
class TextWavLoader(torch.utils.data.Dataset):
|
||||
The upshot is that this dataset loads extremely quickly and consumes almost no system memory.
|
||||
"""
|
||||
def __init__(self, hparams):
|
||||
self.paths = hparams['path']
|
||||
if not isinstance(self.paths, list):
|
||||
|
@ -66,16 +48,10 @@ class TextWavLoader(torch.utils.data.Dataset):
|
|||
self.paths_size_bytes = [os.path.getsize(p) for p in self.paths]
|
||||
self.total_size_bytes = sum(self.paths_size_bytes)
|
||||
|
||||
self.fetcher_mode = opt_get(hparams, ['fetcher_mode'], 'lj')
|
||||
if not isinstance(self.fetcher_mode, list):
|
||||
self.fetcher_mode = [self.fetcher_mode]
|
||||
assert len(self.paths) == len(self.fetcher_mode)
|
||||
|
||||
self.load_conditioning = opt_get(hparams, ['load_conditioning'], False)
|
||||
self.conditioning_candidates = opt_get(hparams, ['num_conditioning_candidates'], 1)
|
||||
self.conditioning_length = opt_get(hparams, ['conditioning_length'], 44100)
|
||||
self.debug_failures = opt_get(hparams, ['debug_loading_failures'], False)
|
||||
self.load_aligned_codes = opt_get(hparams, ['load_aligned_codes'], False)
|
||||
self.aligned_codes_to_audio_ratio = opt_get(hparams, ['aligned_codes_ratio'], 443)
|
||||
self.text_cleaners = hparams.text_cleaners
|
||||
self.sample_rate = hparams.sample_rate
|
||||
|
@ -84,7 +60,7 @@ class TextWavLoader(torch.utils.data.Dataset):
|
|||
self.max_aligned_codes = self.max_wav_len // self.aligned_codes_to_audio_ratio
|
||||
self.max_text_len = opt_get(hparams, ['max_text_length'], None)
|
||||
assert self.max_wav_len is not None and self.max_text_len is not None
|
||||
self.use_bpe_tokenizer = opt_get(hparams, ['use_bpe_tokenizer'], True)
|
||||
self.use_bpe_tokenizer = opt_get(hparams, ['use_bpe_tokenizer'], False)
|
||||
if self.use_bpe_tokenizer:
|
||||
from data.audio.voice_tokenizer import VoiceBpeTokenizer
|
||||
self.tokenizer = VoiceBpeTokenizer(opt_get(hparams, ['tokenizer_vocab'], '../experiments/bpe_lowercase_asr_256.json'))
|
||||
|
@ -119,7 +95,6 @@ class TextWavLoader(torch.utils.data.Dataset):
|
|||
else:
|
||||
rand_offset -= self.paths_size_bytes[i]
|
||||
path = self.paths[i]
|
||||
fm = self.fetcher_mode[i]
|
||||
with open(path, 'r', encoding='utf-8') as f:
|
||||
f.seek(rand_offset)
|
||||
# Read the rest of the line we seeked to, then the line after that.
|
||||
|
@ -132,18 +107,7 @@ class TextWavLoader(torch.utils.data.Dataset):
|
|||
if l2:
|
||||
try:
|
||||
base_path = os.path.dirname(path)
|
||||
if fm == 'lj' or fm == 'libritts':
|
||||
return parse_libri(l2, base_path)
|
||||
elif fm == 'tsv':
|
||||
return parse_tsv_aligned_codes(l2, base_path) if self.load_aligned_codes else parse_tsv(l2, base_path)
|
||||
elif fm == 'mozilla_cv':
|
||||
assert not self.load_conditioning # Conditioning inputs are incompatible with mozilla_cv
|
||||
return parse_mozilla_cv(l2, base_path)
|
||||
elif fm == 'voxpopuli':
|
||||
assert not self.load_conditioning # Conditioning inputs are incompatible with voxpopuli
|
||||
return parse_voxpopuli(l2, base_path)
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
return parse_tsv_aligned_codes(l2, base_path)
|
||||
except:
|
||||
print(f"error parsing random offset: {sys.exc_info()}")
|
||||
return self.load_random_line(depth=depth+1) # On failure, just recurse and try again.
|
||||
|
@ -164,9 +128,7 @@ class TextWavLoader(torch.utils.data.Dataset):
|
|||
if self.debug_failures:
|
||||
print(f"error loading {apt[0]} {sys.exc_info()}")
|
||||
return self[(index+1) % len(self)]
|
||||
|
||||
if self.load_aligned_codes:
|
||||
aligned_codes = apt[2]
|
||||
aligned_codes = apt[2]
|
||||
|
||||
actually_skipped_items = self.skipped_items
|
||||
self.skipped_items = 0
|
||||
|
@ -183,14 +145,14 @@ class TextWavLoader(torch.utils.data.Dataset):
|
|||
orig_text_len = tseq.shape[0]
|
||||
if wav.shape[-1] != self.max_wav_len:
|
||||
wav = F.pad(wav, (0, self.max_wav_len - wav.shape[-1]))
|
||||
if self.load_aligned_codes:
|
||||
# These codes are aligned to audio inputs, so make sure to pad them as well.
|
||||
aligned_codes = F.pad(aligned_codes, (0, self.max_aligned_codes-aligned_codes.shape[0]))
|
||||
# These codes are aligned to audio inputs, so make sure to pad them as well.
|
||||
aligned_codes = F.pad(aligned_codes, (0, self.max_aligned_codes-aligned_codes.shape[0]))
|
||||
if tseq.shape[0] != self.max_text_len:
|
||||
tseq = F.pad(tseq, (0, self.max_text_len - tseq.shape[0]))
|
||||
res = {
|
||||
'real_text': text,
|
||||
'padded_text': tseq,
|
||||
'aligned_codes': aligned_codes,
|
||||
'text_lengths': torch.tensor(orig_text_len, dtype=torch.long),
|
||||
'wav': wav,
|
||||
'wav_lengths': torch.tensor(orig_output, dtype=torch.long),
|
||||
|
@ -200,63 +162,28 @@ class TextWavLoader(torch.utils.data.Dataset):
|
|||
if self.load_conditioning:
|
||||
res['conditioning'] = cond
|
||||
res['conditioning_contains_self'] = cond_is_self
|
||||
if self.load_aligned_codes:
|
||||
res['aligned_codes'] = aligned_codes
|
||||
return res
|
||||
|
||||
def __len__(self):
|
||||
return self.total_size_bytes // 1000 # 1000 cuts down a TSV file to the actual length pretty well, but doesn't work with the other formats.
|
||||
|
||||
|
||||
class PairedVoiceDebugger:
|
||||
def __init__(self):
|
||||
self.total_items = 0
|
||||
self.loaded_items = 0
|
||||
self.self_conditioning_items = 0
|
||||
|
||||
def get_state(self):
|
||||
return {'total_items': self.total_items,
|
||||
'loaded_items': self.loaded_items,
|
||||
'self_conditioning_items': self.self_conditioning_items}
|
||||
|
||||
def load_state(self, state):
|
||||
if isinstance(state, dict):
|
||||
self.total_items = opt_get(state, ['total_items'], 0)
|
||||
self.loaded_items = opt_get(state, ['loaded_items'], 0)
|
||||
self.self_conditioning_items = opt_get(state, ['self_conditioning_items'], 0)
|
||||
|
||||
def update(self, batch):
|
||||
self.total_items += batch['wav'].shape[0]
|
||||
self.loaded_items += batch['skipped_items'].sum().item()
|
||||
if 'conditioning' in batch.keys():
|
||||
self.self_conditioning_items += batch['conditioning_contains_self'].sum().item()
|
||||
|
||||
def get_debugging_map(self):
|
||||
return {
|
||||
'total_samples_loaded': self.total_items,
|
||||
'percent_skipped_samples': (self.loaded_items - self.total_items) / self.loaded_items,
|
||||
'percent_conditioning_is_self': self.self_conditioning_items / self.loaded_items,
|
||||
}
|
||||
return self.total_size_bytes // 1000 # 1000 cuts down a TSV file to the actual length pretty well.
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
batch_sz = 16
|
||||
params = {
|
||||
'mode': 'paired_voice_audio',
|
||||
#'path': ['Y:\\clips\\books1\\transcribed-w2v.tsv'],
|
||||
'path': ['Y:\\bigasr_dataset\\mozcv\\en\\train.tsv'],
|
||||
'fetcher_mode': ['mozilla_cv'],
|
||||
'mode': 'fast_paired_voice_audio',
|
||||
'path': ['Y:\\clips\\books1\\transcribed-w2v.tsv'],
|
||||
'phase': 'train',
|
||||
'n_workers': 0,
|
||||
'batch_size': batch_sz,
|
||||
'max_wav_length': 255995,
|
||||
'max_text_length': 200,
|
||||
'sample_rate': 22050,
|
||||
'load_conditioning': False,
|
||||
'num_conditioning_candidates': 2,
|
||||
'load_conditioning': True,
|
||||
'num_conditioning_candidates': 1,
|
||||
'conditioning_length': 44000,
|
||||
'use_bpe_tokenizer': True,
|
||||
'load_aligned_codes': False,
|
||||
'use_bpe_tokenizer': False,
|
||||
'load_aligned_codes': True,
|
||||
}
|
||||
from data import create_dataset, create_dataloader
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user