forked from mrq/DL-Art-School
Fix mega_batch_factor not set for test
This commit is contained in:
parent
c50cce2a62
commit
3320ad685f
|
@ -41,6 +41,7 @@ class SRGANModel(BaseModel):
|
|||
p.requires_grad = True
|
||||
else:
|
||||
self.netC = None
|
||||
self.mega_batch_factor = 1
|
||||
|
||||
# define losses, optimizer and scheduler
|
||||
if self.is_train:
|
||||
|
|
|
@ -7,17 +7,62 @@ from collections import OrderedDict
|
|||
import options.options as option
|
||||
import utils.util as util
|
||||
from data.util import bgr2ycbcr
|
||||
import models.archs.SwitchedResidualGenerator_arch as srg
|
||||
from switched_conv_util import save_attention_to_image
|
||||
from data import create_dataset, create_dataloader
|
||||
from models import create_model
|
||||
from tqdm import tqdm
|
||||
import torch
|
||||
import models.networks as networks
|
||||
|
||||
|
||||
# Concepts: Swap transformations around. Normalize attention. Disable individual switches, both randomly and one at
|
||||
# a time, starting at the last switch. Pick random regions in an image and print out the full attention vector for
|
||||
# each switch. Yield an output directory name for each alteration and None when last alteration is completed.
|
||||
def alter_srg(srg: srg.ConfigurableSwitchedResidualGenerator2):
|
||||
# First alteration, strip off switches one at a time.
|
||||
yield "naked"
|
||||
for i in range(1, len(srg.switches)):
|
||||
srg.switches = srg.switches[:-i]
|
||||
yield "stripped-%i" % (i,)
|
||||
return None
|
||||
|
||||
def analyze_srg(srg: srg.ConfigurableSwitchedResidualGenerator2, path, alteration_suffix):
|
||||
[save_attention_to_image(path, srg.attentions[i], srg.transformation_counts, i, "attention_" + alteration_suffix,
|
||||
l_mult=5) for i in range(len(srg.attentions))]
|
||||
|
||||
|
||||
def forward_pass(model, output_dir, alteration_suffix=''):
|
||||
model.feed_data(data, need_GT=need_GT)
|
||||
model.test()
|
||||
|
||||
if isinstance(model.fake_GenOut[0], tuple):
|
||||
visuals = model.fake_GenOut[0][0].detach().float().cpu()
|
||||
else:
|
||||
visuals = model.fake_GenOut[0].detach().float().cpu()
|
||||
for i in range(visuals.shape[0]):
|
||||
img_path = data['GT_path'][i] if need_GT else data['LQ_path'][i]
|
||||
img_name = osp.splitext(osp.basename(img_path))[0]
|
||||
|
||||
sr_img = util.tensor2img(visuals[i]) # uint8
|
||||
|
||||
# save images
|
||||
suffix = alteration_suffix
|
||||
if suffix:
|
||||
save_img_path = osp.join(output_dir, img_name + suffix + '.png')
|
||||
else:
|
||||
save_img_path = osp.join(output_dir, img_name + '.png')
|
||||
|
||||
util.save_img(sr_img, save_img_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
#### options
|
||||
torch.backends.cudnn.benchmark = True
|
||||
want_just_images = True
|
||||
srg_analyze = True
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to options YMAL file.', default='../options/test_resgen_upsample.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to options YMAL file.', default='../options/analyze_srg.yml')
|
||||
opt = option.parse(parser.parse_args().opt, is_train=False)
|
||||
opt = option.dict_to_nonedict(opt)
|
||||
|
||||
|
@ -54,40 +99,21 @@ if __name__ == "__main__":
|
|||
tq = tqdm(test_loader)
|
||||
for data in tq:
|
||||
need_GT = False if test_loader.dataset.opt['dataroot_GT'] is None else True
|
||||
model.feed_data(data, need_GT=need_GT)
|
||||
model.test()
|
||||
|
||||
if isinstance(model.fake_H, tuple):
|
||||
visuals = model.fake_H[0].detach().float().cpu()
|
||||
if srg_analyze:
|
||||
orig_model = model.netG
|
||||
model_copy = networks.define_G(opt).to(model.device)
|
||||
model_copy.load_state_dict(orig_model.state_dict())
|
||||
model.netG = model_copy
|
||||
for alteration_suffix in alter_srg(model_copy):
|
||||
img_path = data['GT_path'][0] if need_GT else data['LQ_path'][0]
|
||||
img_name = osp.splitext(osp.basename(img_path))[0]
|
||||
alteration_suffix += img_name
|
||||
forward_pass(model, dataset_dir, alteration_suffix)
|
||||
analyze_srg(model_copy, dataset_dir, alteration_suffix)
|
||||
# Reset model and do next alteration.
|
||||
model_copy = networks.define_G(opt).to(model.device)
|
||||
model_copy.load_state_dict(orig_model.state_dict())
|
||||
model.netG = model_copy
|
||||
else:
|
||||
visuals = model.fake_H.detach().float().cpu()
|
||||
for i in range(visuals.shape[0]):
|
||||
img_path = data['GT_path'][i] if need_GT else data['LQ_path'][i]
|
||||
img_name = osp.splitext(osp.basename(img_path))[0]
|
||||
|
||||
sr_img = util.tensor2img(visuals[i]) # uint8
|
||||
|
||||
# save images
|
||||
suffix = opt['suffix']
|
||||
if suffix:
|
||||
save_img_path = osp.join(dataset_dir, img_name + suffix + '.png')
|
||||
else:
|
||||
save_img_path = osp.join(dataset_dir, img_name + '.png')
|
||||
util.save_img(sr_img, save_img_path)
|
||||
|
||||
if want_just_images:
|
||||
continue
|
||||
|
||||
if not want_just_images and need_GT: # metrics
|
||||
# Average PSNR/SSIM results
|
||||
ave_psnr = sum(test_results['psnr']) / len(test_results['psnr'])
|
||||
ave_ssim = sum(test_results['ssim']) / len(test_results['ssim'])
|
||||
logger.info(
|
||||
'----Average PSNR/SSIM results for {}----\n\tPSNR: {:.6f} dB; SSIM: {:.6f}\n'.format(
|
||||
test_set_name, ave_psnr, ave_ssim))
|
||||
if test_results['psnr_y'] and test_results['ssim_y']:
|
||||
ave_psnr_y = sum(test_results['psnr_y']) / len(test_results['psnr_y'])
|
||||
ave_ssim_y = sum(test_results['ssim_y']) / len(test_results['ssim_y'])
|
||||
logger.info(
|
||||
'----Y channel, average PSNR/SSIM----\n\tPSNR_Y: {:.6f} dB; SSIM_Y: {:.6f}\n'.
|
||||
format(ave_psnr_y, ave_ssim_y))
|
||||
forward_pass(model, dataset_dir)
|
||||
|
|
Loading…
Reference in New Issue
Block a user