forked from mrq/DL-Art-School
Add multi-modal trainer
This commit is contained in:
parent
40dc2938e8
commit
3e3d2af1f3
|
@ -19,7 +19,7 @@ logger = logging.getLogger('base')
|
|||
|
||||
|
||||
class ExtensibleTrainer(BaseModel):
|
||||
def __init__(self, opt):
|
||||
def __init__(self, opt, cached_networks={}):
|
||||
super(ExtensibleTrainer, self).__init__(opt)
|
||||
if opt['dist']:
|
||||
self.rank = torch.distributed.get_rank()
|
||||
|
@ -49,10 +49,16 @@ class ExtensibleTrainer(BaseModel):
|
|||
if 'trainable' not in net.keys():
|
||||
net['trainable'] = True
|
||||
|
||||
if name in cached_networks.keys():
|
||||
new_net = cached_networks[name]
|
||||
else:
|
||||
new_net = None
|
||||
if net['type'] == 'generator':
|
||||
if new_net is None:
|
||||
new_net = networks.define_G(net, None, opt['scale']).to(self.device)
|
||||
self.netsG[name] = new_net
|
||||
elif net['type'] == 'discriminator':
|
||||
if new_net is None:
|
||||
new_net = networks.define_D_net(net, opt['datasets']['train']['target_size']).to(self.device)
|
||||
self.netsD[name] = new_net
|
||||
else:
|
||||
|
|
|
@ -41,6 +41,9 @@ def extract_params_from_state(params: object, state: object, root: object = True
|
|||
if isinstance(params, list) or isinstance(params, tuple):
|
||||
p = [extract_params_from_state(r, state, False) for r in params]
|
||||
elif isinstance(params, str):
|
||||
if params == 'None':
|
||||
p = None
|
||||
else:
|
||||
p = state[params]
|
||||
else:
|
||||
p = params
|
||||
|
|
45
codes/multi_modal_train.py
Normal file
45
codes/multi_modal_train.py
Normal file
|
@ -0,0 +1,45 @@
|
|||
# This is a wrapper around train.py which allows you to train a set of models using a variety of different training
|
||||
# paradigms. This works by using the yielding mechanism built into train.py to iterate one step at a time and
|
||||
# synchronize the underlying models.
|
||||
#
|
||||
# Note that this wrapper is **EXTREMELY** simple and doesn't attempt to do many things. Some issues you should plan for:
|
||||
# 1) Each trainer will have its own optimizer for the underlying model - even when the model is shared.
|
||||
# 2) Each trainer will run validation and save model states according to its own schedule. Likewise:
|
||||
# 3) Each trainer will load state params for the models it controls independently, regardless of whether or not those
|
||||
# models are shared. Your best bet is to have all models save state at the same time so that they all load ~ the same
|
||||
# state when re-started.
|
||||
import argparse
|
||||
import train
|
||||
import utils.options as option
|
||||
|
||||
def main(master_opt, launcher):
|
||||
trainers = []
|
||||
all_networks = {}
|
||||
shared_networks = []
|
||||
for i, sub_opt in enumerate(master_opt['trainer_options']):
|
||||
sub_opt_parsed = option.parse(sub_opt, is_train=True)
|
||||
# This creates trainers() as a list of generators.
|
||||
train_gen = train.yielding_main(sub_opt_parsed, launcher, i, all_networks)
|
||||
model = next(train_gen)
|
||||
for k, v in model.networks.items():
|
||||
if k in all_networks.keys() and k not in shared_networks:
|
||||
shared_networks.append(k)
|
||||
all_networks[k] = v
|
||||
trainers.append(train_gen)
|
||||
print("Networks being shared by trainers: ", shared_networks)
|
||||
|
||||
# Now, simply "iterate" through the trainers to accomplish training.
|
||||
while True:
|
||||
for trainer in trainers:
|
||||
next(trainer)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
#parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_imgset_chained_structured_trans_invariance.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||
args = parser.parse_args()
|
||||
opt = {
|
||||
'trainer_options': ['../options/teco.yml', '../options/exd.yml']
|
||||
}
|
||||
main(opt, args.launcher)
|
279
codes/train.py
279
codes/train.py
|
@ -27,40 +27,15 @@ def init_dist(backend='nccl', **kwargs):
|
|||
torch.cuda.set_device(rank % num_gpus)
|
||||
dist.init_process_group(backend=backend, **kwargs)
|
||||
|
||||
def main():
|
||||
#### options
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_imgset_chained_structured_trans_invariance.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
args = parser.parse_args()
|
||||
opt = option.parse(args.opt, is_train=True)
|
||||
|
||||
colab_mode = False if 'colab_mode' not in opt.keys() else opt['colab_mode']
|
||||
if colab_mode:
|
||||
# Check the configuration of the remote server. Expect models, resume_state, and val_images directories to be there.
|
||||
# Each one should have a TEST file in it.
|
||||
util.get_files_from_server(opt['ssh_server'], opt['ssh_username'], opt['ssh_password'],
|
||||
os.path.join(opt['remote_path'], 'training_state', "TEST"))
|
||||
util.get_files_from_server(opt['ssh_server'], opt['ssh_username'], opt['ssh_password'],
|
||||
os.path.join(opt['remote_path'], 'models', "TEST"))
|
||||
util.get_files_from_server(opt['ssh_server'], opt['ssh_username'], opt['ssh_password'],
|
||||
os.path.join(opt['remote_path'], 'val_images', "TEST"))
|
||||
# Load the state and models needed from the remote server.
|
||||
if opt['path']['resume_state']:
|
||||
util.get_files_from_server(opt['ssh_server'], opt['ssh_username'], opt['ssh_password'], os.path.join(opt['remote_path'], 'training_state', opt['path']['resume_state']))
|
||||
if opt['path']['pretrain_model_G']:
|
||||
util.get_files_from_server(opt['ssh_server'], opt['ssh_username'], opt['ssh_password'], os.path.join(opt['remote_path'], 'models', opt['path']['pretrain_model_G']))
|
||||
if opt['path']['pretrain_model_D']:
|
||||
util.get_files_from_server(opt['ssh_server'], opt['ssh_username'], opt['ssh_password'], os.path.join(opt['remote_path'], 'models', opt['path']['pretrain_model_D']))
|
||||
|
||||
def main(opt, launcher='none'):
|
||||
#### distributed training settings
|
||||
if len(opt['gpu_ids']) == 1 and torch.cuda.device_count() > 1:
|
||||
gpu = input('I noticed you have multiple GPUs. Starting two jobs on the same GPU sucks. Please confirm which GPU'
|
||||
'you want to use. Press enter to use the specified one [%s]' % (opt['gpu_ids']))
|
||||
if gpu:
|
||||
opt['gpu_ids'] = [int(gpu)]
|
||||
if args.launcher == 'none': # disabled distributed training
|
||||
if launcher == 'none': # disabled distributed training
|
||||
opt['dist'] = False
|
||||
rank = -1
|
||||
print('Disabled distributed training.')
|
||||
|
@ -257,9 +232,6 @@ def main():
|
|||
if visuals is None:
|
||||
continue
|
||||
|
||||
if colab_mode:
|
||||
colab_imgs_to_copy.append(save_img_path)
|
||||
|
||||
# calculate PSNR
|
||||
sr_img = util.tensor2img(visuals['rlt'][b]) # uint8
|
||||
gt_img = util.tensor2img(visuals['GT'][b]) # uint8
|
||||
|
@ -274,10 +246,242 @@ def main():
|
|||
save_img_path = os.path.join(img_dir, img_base_name)
|
||||
util.save_img(sr_img, save_img_path)
|
||||
|
||||
if colab_mode:
|
||||
util.copy_files_to_server(opt['ssh_server'], opt['ssh_username'], opt['ssh_password'],
|
||||
colab_imgs_to_copy,
|
||||
os.path.join(opt['remote_path'], 'val_images', img_base_name))
|
||||
avg_psnr = avg_psnr / idx
|
||||
avg_fea_loss = avg_fea_loss / idx
|
||||
|
||||
# log
|
||||
logger.info('# Validation # PSNR: {:.4e} Fea: {:.4e}'.format(avg_psnr, avg_fea_loss))
|
||||
# tensorboard logger
|
||||
if opt['use_tb_logger'] and 'debug' not in opt['name'] and rank <= 0:
|
||||
tb_logger.add_scalar('val_psnr', avg_psnr, current_step)
|
||||
tb_logger.add_scalar('val_fea', avg_fea_loss, current_step)
|
||||
|
||||
if rank <= 0:
|
||||
logger.info('Saving the final model.')
|
||||
model.save('latest')
|
||||
logger.info('End of training.')
|
||||
tb_logger.close()
|
||||
|
||||
# TODO: Integrate with above main by putting this into an object and splitting up business logic.
|
||||
def yielding_main(opt, launcher='none', trainer_id=0, all_networks={}):
|
||||
#### distributed training settings
|
||||
if len(opt['gpu_ids']) == 1 and torch.cuda.device_count() > 1:
|
||||
gpu = input('I noticed you have multiple GPUs. Starting two jobs on the same GPU sucks. Please confirm which GPU'
|
||||
'you want to use. Press enter to use the specified one [%s]' % (opt['gpu_ids']))
|
||||
if gpu:
|
||||
opt['gpu_ids'] = [int(gpu)]
|
||||
if launcher == 'none': # disabled distributed training
|
||||
opt['dist'] = False
|
||||
rank = -1
|
||||
print('Disabled distributed training.')
|
||||
|
||||
else:
|
||||
opt['dist'] = True
|
||||
init_dist()
|
||||
world_size = torch.distributed.get_world_size()
|
||||
rank = torch.distributed.get_rank()
|
||||
|
||||
#### loading resume state if exists
|
||||
if opt['path'].get('resume_state', None):
|
||||
# distributed resuming: all load into default GPU
|
||||
device_id = torch.cuda.current_device()
|
||||
resume_state = torch.load(opt['path']['resume_state'],
|
||||
map_location=lambda storage, loc: storage.cuda(device_id))
|
||||
option.check_resume(opt, resume_state['iter']) # check resume options
|
||||
else:
|
||||
resume_state = None
|
||||
|
||||
#### mkdir and loggers
|
||||
if rank <= 0: # normal training (rank -1) OR distributed training (rank 0)
|
||||
if resume_state is None:
|
||||
util.mkdir_and_rename(
|
||||
opt['path']['experiments_root']) # rename experiment folder if exists
|
||||
util.mkdirs((path for key, path in opt['path'].items() if not key == 'experiments_root' and path is not None
|
||||
and 'pretrain_model' not in key and 'resume' not in key))
|
||||
|
||||
# config loggers. Before it, the log will not work
|
||||
util.setup_logger('base', opt['path']['log'], 'train_' + opt['name'], level=logging.INFO,
|
||||
screen=True, tofile=True)
|
||||
logger = logging.getLogger('base')
|
||||
logger.info(option.dict2str(opt))
|
||||
# tensorboard logger
|
||||
if opt['use_tb_logger'] and 'debug' not in opt['name']:
|
||||
tb_logger_path = os.path.join(opt['path']['experiments_root'], 'tb_logger')
|
||||
version = float(torch.__version__[0:3])
|
||||
if version >= 1.1: # PyTorch 1.1
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
else:
|
||||
logger.info(
|
||||
'You are using PyTorch {}. Tensorboard will use [tensorboardX]'.format(version))
|
||||
from tensorboardX import SummaryWriter
|
||||
tb_logger = SummaryWriter(log_dir=tb_logger_path)
|
||||
else:
|
||||
util.setup_logger('base', opt['path']['log'], 'train', level=logging.INFO, screen=True)
|
||||
logger = logging.getLogger('base')
|
||||
|
||||
# convert to NoneDict, which returns None for missing keys
|
||||
opt = option.dict_to_nonedict(opt)
|
||||
|
||||
#### random seed
|
||||
seed = opt['train']['manual_seed']
|
||||
if seed is None:
|
||||
seed = random.randint(1, 10000)
|
||||
if rank <= 0:
|
||||
logger.info('Random seed: {}'.format(seed))
|
||||
util.set_random_seed(seed)
|
||||
|
||||
torch.backends.cudnn.benchmark = True
|
||||
# torch.backends.cudnn.deterministic = True
|
||||
# torch.autograd.set_detect_anomaly(True)
|
||||
|
||||
# Save the compiled opt dict to the global loaded_options variable.
|
||||
util.loaded_options = opt
|
||||
|
||||
#### create train and val dataloader
|
||||
dataset_ratio = 1 # enlarge the size of each epoch
|
||||
for phase, dataset_opt in opt['datasets'].items():
|
||||
if phase == 'train':
|
||||
train_set = create_dataset(dataset_opt)
|
||||
train_size = int(math.ceil(len(train_set) / dataset_opt['batch_size']))
|
||||
total_iters = int(opt['train']['niter'])
|
||||
total_epochs = int(math.ceil(total_iters / train_size))
|
||||
if opt['dist']:
|
||||
train_sampler = DistIterSampler(train_set, world_size, rank, dataset_ratio)
|
||||
total_epochs = int(math.ceil(total_iters / (train_size * dataset_ratio)))
|
||||
else:
|
||||
train_sampler = None
|
||||
train_loader = create_dataloader(train_set, dataset_opt, opt, train_sampler)
|
||||
if rank <= 0:
|
||||
logger.info('Number of train images: {:,d}, iters: {:,d}'.format(
|
||||
len(train_set), train_size))
|
||||
logger.info('Total epochs needed: {:d} for iters {:,d}'.format(
|
||||
total_epochs, total_iters))
|
||||
elif phase == 'val':
|
||||
val_set = create_dataset(dataset_opt)
|
||||
val_loader = create_dataloader(val_set, dataset_opt, opt, None)
|
||||
if rank <= 0:
|
||||
logger.info('Number of val images in [{:s}]: {:d}'.format(
|
||||
dataset_opt['name'], len(val_set)))
|
||||
else:
|
||||
raise NotImplementedError('Phase [{:s}] is not recognized.'.format(phase))
|
||||
assert train_loader is not None
|
||||
|
||||
#### create model
|
||||
model = ExtensibleTrainer(opt, all_networks)
|
||||
|
||||
#### resume training
|
||||
if resume_state:
|
||||
logger.info('Resuming training from epoch: {}, iter: {}.'.format(
|
||||
resume_state['epoch'], resume_state['iter']))
|
||||
|
||||
start_epoch = resume_state['epoch']
|
||||
current_step = resume_state['iter']
|
||||
model.resume_training(resume_state, 'amp_opt_level' in opt.keys()) # handle optimizers and schedulers
|
||||
else:
|
||||
current_step = -1 if 'start_step' not in opt.keys() else opt['start_step']
|
||||
start_epoch = 0
|
||||
if 'force_start_step' in opt.keys():
|
||||
current_step = opt['force_start_step']
|
||||
|
||||
#### training
|
||||
logger.info('Start training from epoch: {:d}, iter: {:d}'.format(start_epoch, current_step))
|
||||
for epoch in range(start_epoch, total_epochs + 1):
|
||||
if opt['dist']:
|
||||
train_sampler.set_epoch(epoch)
|
||||
tq_ldr = tqdm(train_loader, position=trainer_id)
|
||||
|
||||
_t = time()
|
||||
_profile = False
|
||||
for train_data in tq_ldr:
|
||||
# Yielding supports multi-modal trainer which operates multiple train.py instances.
|
||||
yield model
|
||||
|
||||
if _profile:
|
||||
print("Data fetch: %f" % (time() - _t))
|
||||
_t = time()
|
||||
|
||||
current_step += 1
|
||||
if current_step > total_iters:
|
||||
break
|
||||
#### update learning rate
|
||||
model.update_learning_rate(current_step, warmup_iter=opt['train']['warmup_iter'])
|
||||
|
||||
#### training
|
||||
if _profile:
|
||||
print("Update LR: %f" % (time() - _t))
|
||||
_t = time()
|
||||
model.feed_data(train_data)
|
||||
model.optimize_parameters(current_step)
|
||||
if _profile:
|
||||
print("Model feed + step: %f" % (time() - _t))
|
||||
_t = time()
|
||||
|
||||
#### log
|
||||
if current_step % opt['logger']['print_freq'] == 0 and rank <= 0:
|
||||
logs = model.get_current_log(current_step)
|
||||
message = '[epoch:{:3d}, iter:{:8,d}, lr:('.format(epoch, current_step)
|
||||
for v in model.get_current_learning_rate():
|
||||
message += '{:.3e},'.format(v)
|
||||
message += ')] '
|
||||
for k, v in logs.items():
|
||||
if 'histogram' in k:
|
||||
tb_logger.add_histogram(k, v, current_step)
|
||||
elif isinstance(v, dict):
|
||||
tb_logger.add_scalars(k, v, current_step)
|
||||
else:
|
||||
message += '{:s}: {:.4e} '.format(k, v)
|
||||
# tensorboard logger
|
||||
if opt['use_tb_logger'] and 'debug' not in opt['name']:
|
||||
tb_logger.add_scalar(k, v, current_step)
|
||||
logger.info(message)
|
||||
|
||||
#### save models and training states
|
||||
if current_step % opt['logger']['save_checkpoint_freq'] == 0:
|
||||
if rank <= 0:
|
||||
logger.info('Saving models and training states.')
|
||||
model.save(current_step)
|
||||
model.save_training_state(epoch, current_step)
|
||||
if 'alt_path' in opt['path'].keys():
|
||||
import shutil
|
||||
print("Synchronizing tb_logger to alt_path..")
|
||||
alt_tblogger = os.path.join(opt['path']['alt_path'], "tb_logger")
|
||||
shutil.rmtree(alt_tblogger, ignore_errors=True)
|
||||
shutil.copytree(tb_logger_path, alt_tblogger)
|
||||
|
||||
#### validation
|
||||
if opt['datasets'].get('val', None) and current_step % opt['train']['val_freq'] == 0:
|
||||
if opt['model'] in ['sr', 'srgan', 'corruptgan', 'spsrgan', 'extensibletrainer'] and rank <= 0: # image restoration validation
|
||||
avg_psnr = 0.
|
||||
avg_fea_loss = 0.
|
||||
idx = 0
|
||||
val_tqdm = tqdm(val_loader)
|
||||
for val_data in val_tqdm:
|
||||
idx += 1
|
||||
for b in range(len(val_data['LQ_path'])):
|
||||
img_name = os.path.splitext(os.path.basename(val_data['LQ_path'][b]))[0]
|
||||
img_dir = os.path.join(opt['path']['val_images'], img_name)
|
||||
util.mkdir(img_dir)
|
||||
|
||||
model.feed_data(val_data)
|
||||
model.test()
|
||||
|
||||
visuals = model.get_current_visuals()
|
||||
if visuals is None:
|
||||
continue
|
||||
|
||||
# calculate PSNR
|
||||
sr_img = util.tensor2img(visuals['rlt'][b]) # uint8
|
||||
gt_img = util.tensor2img(visuals['GT'][b]) # uint8
|
||||
sr_img, gt_img = util.crop_border([sr_img, gt_img], opt['scale'])
|
||||
avg_psnr += util.calculate_psnr(sr_img, gt_img)
|
||||
|
||||
# calculate fea loss
|
||||
avg_fea_loss += model.compute_fea_loss(visuals['rlt'][b], visuals['GT'][b])
|
||||
|
||||
# Save SR images for reference
|
||||
img_base_name = '{:s}_{:d}.png'.format(img_name, current_step)
|
||||
save_img_path = os.path.join(img_dir, img_base_name)
|
||||
util.save_img(sr_img, save_img_path)
|
||||
|
||||
avg_psnr = avg_psnr / idx
|
||||
avg_fea_loss = avg_fea_loss / idx
|
||||
|
@ -297,4 +501,9 @@ def main():
|
|||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_imgset_chained_structured_trans_invariance.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||
args = parser.parse_args()
|
||||
opt = option.parse(args.opt, is_train=True)
|
||||
main(opt, args.launcher)
|
||||
|
|
|
@ -30,7 +30,7 @@ def init_dist(backend='nccl', **kwargs):
|
|||
def main():
|
||||
#### options
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_mi1_chained_structured.yml')
|
||||
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_mi1_multifaceted_chained.yml')
|
||||
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
|
||||
parser.add_argument('--local_rank', type=int, default=0)
|
||||
args = parser.parse_args()
|
||||
|
|
Loading…
Reference in New Issue
Block a user