forked from mrq/DL-Art-School
revert flat diffusion back...
This commit is contained in:
parent
8f28404645
commit
4093e38717
|
@ -1,17 +1,13 @@
|
||||||
import os
|
|
||||||
import random
|
import random
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
import torchvision
|
|
||||||
from torch import autocast
|
from torch import autocast
|
||||||
|
|
||||||
from models.arch_util import ResBlock
|
from models.arch_util import ResBlock
|
||||||
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
||||||
from models.diffusion.unet_diffusion import AttentionBlock, TimestepEmbedSequential, TimestepBlock
|
from models.diffusion.unet_diffusion import AttentionBlock, TimestepEmbedSequential, TimestepBlock
|
||||||
from scripts.audio.gen.use_mel2vec_codes import collapse_codegroups
|
|
||||||
from trainer.injectors.audio_injectors import normalize_mel
|
|
||||||
from trainer.networks import register_model
|
from trainer.networks import register_model
|
||||||
from utils.util import checkpoint
|
from utils.util import checkpoint
|
||||||
|
|
||||||
|
@ -111,20 +107,6 @@ class DiffusionLayer(TimestepBlock):
|
||||||
return self.attn(y)
|
return self.attn(y)
|
||||||
|
|
||||||
|
|
||||||
class NonTimestepResidualAttentionNorm(nn.Module):
|
|
||||||
def __init__(self, model_channels, dropout):
|
|
||||||
super().__init__()
|
|
||||||
self.resblk = ResBlock(dims=1, channels=model_channels, dropout=dropout)
|
|
||||||
self.attn = AttentionBlock(model_channels, num_heads=model_channels//64, relative_pos_embeddings=True)
|
|
||||||
self.norm = nn.GroupNorm(num_groups=8, num_channels=model_channels)
|
|
||||||
|
|
||||||
def forward(self, x):
|
|
||||||
h = self.resblk(x)
|
|
||||||
h = self.norm(h)
|
|
||||||
h = self.attn(h)
|
|
||||||
return h
|
|
||||||
|
|
||||||
|
|
||||||
class FlatDiffusion(nn.Module):
|
class FlatDiffusion(nn.Module):
|
||||||
def __init__(
|
def __init__(
|
||||||
self,
|
self,
|
||||||
|
@ -141,6 +123,7 @@ class FlatDiffusion(nn.Module):
|
||||||
# Parameters for regularization.
|
# Parameters for regularization.
|
||||||
layer_drop=.1,
|
layer_drop=.1,
|
||||||
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
|
unconditioned_percentage=.1, # This implements a mechanism similar to what is used in classifier-free training.
|
||||||
|
train_mel_head=False,
|
||||||
):
|
):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
|
@ -154,7 +137,6 @@ class FlatDiffusion(nn.Module):
|
||||||
self.layer_drop = layer_drop
|
self.layer_drop = layer_drop
|
||||||
|
|
||||||
self.inp_block = conv_nd(1, in_channels, model_channels, 3, 1, 1)
|
self.inp_block = conv_nd(1, in_channels, model_channels, 3, 1, 1)
|
||||||
# TODO: I'd really like to see if this could be ablated. It seems useless to me: why can't the embedding just learn this mapping directly?
|
|
||||||
self.time_embed = nn.Sequential(
|
self.time_embed = nn.Sequential(
|
||||||
linear(model_channels, model_channels),
|
linear(model_channels, model_channels),
|
||||||
nn.SiLU(),
|
nn.SiLU(),
|
||||||
|
@ -168,23 +150,32 @@ class FlatDiffusion(nn.Module):
|
||||||
self.embeddings = nn.ModuleList([nn.Embedding(in_vectors, model_channels//in_groups) for _ in range(in_groups)])
|
self.embeddings = nn.ModuleList([nn.Embedding(in_vectors, model_channels//in_groups) for _ in range(in_groups)])
|
||||||
self.latent_conditioner = nn.Sequential(
|
self.latent_conditioner = nn.Sequential(
|
||||||
nn.Conv1d(in_latent_channels, model_channels, 3, padding=1),
|
nn.Conv1d(in_latent_channels, model_channels, 3, padding=1),
|
||||||
NonTimestepResidualAttentionNorm(model_channels, dropout),
|
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
||||||
NonTimestepResidualAttentionNorm(model_channels, dropout),
|
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
||||||
nn.Conv1d(model_channels, model_channels, 3, padding=1),
|
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
||||||
|
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
||||||
)
|
)
|
||||||
self.latent_fade = nn.Parameter(torch.zeros(1,model_channels,1))
|
|
||||||
self.code_converter = nn.Sequential(
|
self.code_converter = nn.Sequential(
|
||||||
NonTimestepResidualAttentionNorm(model_channels, dropout),
|
ResBlock(dims=1, channels=model_channels, dropout=dropout),
|
||||||
NonTimestepResidualAttentionNorm(model_channels, dropout),
|
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
||||||
NonTimestepResidualAttentionNorm(model_channels, dropout),
|
ResBlock(dims=1, channels=model_channels, dropout=dropout),
|
||||||
nn.Conv1d(model_channels, model_channels, 3, padding=1),
|
AttentionBlock(model_channels, num_heads, relative_pos_embeddings=True),
|
||||||
|
ResBlock(dims=1, channels=model_channels, dropout=dropout),
|
||||||
)
|
)
|
||||||
self.conditioning_embedder = nn.Sequential(nn.Conv1d(in_channels, model_channels // 2, 3, padding=1, stride=2),
|
self.code_norm = normalization(model_channels)
|
||||||
nn.Conv1d(model_channels//2, model_channels,3,padding=1,stride=2),
|
self.contextual_embedder = nn.Sequential(nn.Conv1d(in_channels,model_channels,3,padding=1,stride=2),
|
||||||
NonTimestepResidualAttentionNorm(model_channels, dropout),
|
nn.Conv1d(model_channels, model_channels*2,3,padding=1,stride=2),
|
||||||
NonTimestepResidualAttentionNorm(model_channels, dropout),
|
AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True, do_checkpoint=False),
|
||||||
NonTimestepResidualAttentionNorm(model_channels, dropout))
|
AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True, do_checkpoint=False),
|
||||||
|
AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True, do_checkpoint=False),
|
||||||
|
AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True, do_checkpoint=False),
|
||||||
|
AttentionBlock(model_channels*2, num_heads, relative_pos_embeddings=True, do_checkpoint=False))
|
||||||
self.unconditioned_embedding = nn.Parameter(torch.randn(1,model_channels,1))
|
self.unconditioned_embedding = nn.Parameter(torch.randn(1,model_channels,1))
|
||||||
|
self.conditioning_timestep_integrator = TimestepEmbedSequential(
|
||||||
|
DiffusionLayer(model_channels, dropout, num_heads),
|
||||||
|
DiffusionLayer(model_channels, dropout, num_heads),
|
||||||
|
DiffusionLayer(model_channels, dropout, num_heads),
|
||||||
|
)
|
||||||
self.integrating_conv = nn.Conv1d(model_channels*2, model_channels, kernel_size=1)
|
self.integrating_conv = nn.Conv1d(model_channels*2, model_channels, kernel_size=1)
|
||||||
self.mel_head = nn.Conv1d(model_channels, in_channels, kernel_size=3, padding=1)
|
self.mel_head = nn.Conv1d(model_channels, in_channels, kernel_size=3, padding=1)
|
||||||
|
|
||||||
|
@ -197,97 +188,97 @@ class FlatDiffusion(nn.Module):
|
||||||
zero_module(conv_nd(1, model_channels, out_channels, 3, padding=1)),
|
zero_module(conv_nd(1, model_channels, out_channels, 3, padding=1)),
|
||||||
)
|
)
|
||||||
|
|
||||||
self.debug_codes = {}
|
if train_mel_head:
|
||||||
|
for m in [self.conditioning_timestep_integrator, self.integrating_conv, self.layers,
|
||||||
|
self.out]:
|
||||||
|
for p in m.parameters():
|
||||||
|
p.requires_grad = False
|
||||||
|
p.DO_NOT_TRAIN = True
|
||||||
|
|
||||||
def get_grad_norm_parameter_groups(self):
|
def get_grad_norm_parameter_groups(self):
|
||||||
groups = {
|
groups = {
|
||||||
'contextual_embedder': list(self.conditioning_embedder.parameters()),
|
'minicoder': list(self.contextual_embedder.parameters()),
|
||||||
'layers': list(self.layers.parameters()) + list(self.integrating_conv.parameters()) + list(self.inp_block.parameters()),
|
'layers': list(self.layers.parameters()),
|
||||||
'code_converters': list(self.embeddings.parameters()) + list(self.code_converter.parameters()) + list(self.latent_conditioner.parameters()),
|
'code_converters': list(self.embeddings.parameters()) + list(self.code_converter.parameters()) + list(self.latent_conditioner.parameters()),
|
||||||
|
'timestep_integrator': list(self.conditioning_timestep_integrator.parameters()) + list(self.integrating_conv.parameters()),
|
||||||
'time_embed': list(self.time_embed.parameters()),
|
'time_embed': list(self.time_embed.parameters()),
|
||||||
}
|
}
|
||||||
return groups
|
return groups
|
||||||
|
|
||||||
def timestep_independent(self, codes, conditioning_input, expected_seq_len, prenet_latent=None, return_code_pred=False):
|
def timestep_independent(self, aligned_conditioning, conditioning_input, expected_seq_len, return_code_pred):
|
||||||
cond_emb = self.conditioning_embedder(conditioning_input)[:, :, 0]
|
# Shuffle aligned_latent to BxCxS format
|
||||||
|
if is_latent(aligned_conditioning):
|
||||||
|
aligned_conditioning = aligned_conditioning.permute(0, 2, 1)
|
||||||
|
|
||||||
# Shuffle prenet_latent to BxCxS format
|
# Note: this block does not need to repeated on inference, since it is not timestep-dependent or x-dependent.
|
||||||
if prenet_latent is not None:
|
speech_conditioning_input = conditioning_input.unsqueeze(1) if len(
|
||||||
prenet_latent = prenet_latent.permute(0, 2, 1)
|
conditioning_input.shape) == 3 else conditioning_input
|
||||||
|
conds = []
|
||||||
code_emb = [embedding(codes[:, :, i]) for i, embedding in enumerate(self.embeddings)]
|
for j in range(speech_conditioning_input.shape[1]):
|
||||||
|
conds.append(self.contextual_embedder(speech_conditioning_input[:, j]))
|
||||||
|
conds = torch.cat(conds, dim=-1)
|
||||||
|
cond_emb = conds.mean(dim=-1)
|
||||||
|
cond_scale, cond_shift = torch.chunk(cond_emb, 2, dim=1)
|
||||||
|
if is_latent(aligned_conditioning):
|
||||||
|
code_emb = self.latent_conditioner(aligned_conditioning)
|
||||||
|
else:
|
||||||
|
code_emb = [embedding(aligned_conditioning[:, :, i]) for i, embedding in enumerate(self.embeddings)]
|
||||||
code_emb = torch.cat(code_emb, dim=-1).permute(0,2,1)
|
code_emb = torch.cat(code_emb, dim=-1).permute(0,2,1)
|
||||||
if prenet_latent is not None:
|
|
||||||
latent_conditioning = self.latent_conditioner(prenet_latent)
|
|
||||||
code_emb = code_emb + latent_conditioning * self.latent_fade
|
|
||||||
|
|
||||||
unconditioned_batches = torch.zeros((code_emb.shape[0], 1, 1), device=code_emb.device)
|
unconditioned_batches = torch.zeros((code_emb.shape[0], 1, 1), device=code_emb.device)
|
||||||
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
|
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
|
||||||
if self.training and self.unconditioned_percentage > 0:
|
if self.training and self.unconditioned_percentage > 0:
|
||||||
unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1),
|
unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1),
|
||||||
device=code_emb.device) < self.unconditioned_percentage
|
device=code_emb.device) < self.unconditioned_percentage
|
||||||
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(codes.shape[0], 1, 1),
|
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(aligned_conditioning.shape[0], 1, 1),
|
||||||
code_emb)
|
code_emb)
|
||||||
code_emb = self.code_converter(code_emb)
|
|
||||||
|
|
||||||
expanded_code_emb = F.interpolate(code_emb, size=expected_seq_len, mode='nearest')
|
expanded_code_emb = F.interpolate(code_emb, size=expected_seq_len, mode='nearest')
|
||||||
|
expanded_code_emb = self.code_converter(expanded_code_emb)
|
||||||
|
expanded_code_emb = self.code_norm(expanded_code_emb) * (1 + cond_scale.unsqueeze(-1)) + cond_shift.unsqueeze(-1)
|
||||||
|
|
||||||
if not return_code_pred:
|
if not return_code_pred:
|
||||||
return expanded_code_emb, cond_emb
|
return expanded_code_emb
|
||||||
else:
|
else:
|
||||||
# Perform the mel_head computation on the pre-exanded code embeddings, then interpolate it separately.
|
mel_pred = self.mel_head(expanded_code_emb)
|
||||||
mel_pred = self.mel_head(code_emb)
|
# Multiply mel_pred by !unconditioned_branches, which drops the gradient on unconditioned branches. This is because we don't want that gradient being used to train parameters through the codes_embedder as it unbalances contributions to that network from the MSE loss.
|
||||||
mel_pred = F.interpolate(mel_pred, size=expected_seq_len, mode='nearest')
|
|
||||||
# Multiply mel_pred by !unconditioned_branches, which drops the gradient on unconditioned branches.
|
|
||||||
# This is because we don't want that gradient being used to train parameters through the codes_embedder as
|
|
||||||
# it unbalances contributions to that network from the MSE loss.
|
|
||||||
mel_pred = mel_pred * unconditioned_batches.logical_not()
|
mel_pred = mel_pred * unconditioned_batches.logical_not()
|
||||||
return expanded_code_emb, cond_emb, mel_pred
|
return expanded_code_emb, mel_pred
|
||||||
|
|
||||||
|
|
||||||
def forward(self, x, timesteps,
|
def forward(self, x, timesteps, aligned_conditioning=None, conditioning_input=None, precomputed_aligned_embeddings=None, conditioning_free=False, return_code_pred=False):
|
||||||
codes=None, conditioning_input=None, prenet_latent=None,
|
|
||||||
precomputed_code_embeddings=None, precomputed_cond_embeddings=None,
|
|
||||||
conditioning_free=False, return_code_pred=False):
|
|
||||||
"""
|
"""
|
||||||
Apply the model to an input batch.
|
Apply the model to an input batch.
|
||||||
|
|
||||||
There are two ways to call this method:
|
|
||||||
1) Specify codes, conditioning_input and optionally prenet_latent
|
|
||||||
2) Specify precomputed_code_embeddings and precomputed_cond_embeddings, retrieved by calling timestep_independent yourself.
|
|
||||||
|
|
||||||
:param x: an [N x C x ...] Tensor of inputs.
|
:param x: an [N x C x ...] Tensor of inputs.
|
||||||
:param timesteps: a 1-D batch of timesteps.
|
:param timesteps: a 1-D batch of timesteps.
|
||||||
:param codes: an aligned latent or sequence of tokens providing useful data about the sample to be produced.
|
:param aligned_conditioning: an aligned latent or sequence of tokens providing useful data about the sample to be produced.
|
||||||
:param conditioning_input: a full-resolution audio clip that is used as a reference to the style you want decoded.
|
:param conditioning_input: a full-resolution audio clip that is used as a reference to the style you want decoded.
|
||||||
:param prenet_latent: optional latent vector aligned with codes derived from a prior network.
|
:param precomputed_aligned_embeddings: Embeddings returned from self.timestep_independent()
|
||||||
:param precomputed_code_embeddings: Code embeddings returned from self.timestep_independent()
|
|
||||||
:param precomputed_cond_embeddings: Conditional embeddings returned from self.timestep_independent()
|
|
||||||
:param conditioning_free: When set, all conditioning inputs (including tokens and conditioning_input) will not be considered.
|
:param conditioning_free: When set, all conditioning inputs (including tokens and conditioning_input) will not be considered.
|
||||||
:return: an [N x C x ...] Tensor of outputs.
|
:return: an [N x C x ...] Tensor of outputs.
|
||||||
"""
|
"""
|
||||||
if precomputed_code_embeddings is not None:
|
assert precomputed_aligned_embeddings is not None or (aligned_conditioning is not None and conditioning_input is not None)
|
||||||
assert precomputed_cond_embeddings is not None, "Must specify both precomputed embeddings if one is specified"
|
assert not (return_code_pred and precomputed_aligned_embeddings is not None) # These two are mutually exclusive.
|
||||||
assert codes is None and conditioning_input is None and prenet_latent is None, "Do not provide precomputed embeddings and the other parameters. It is unclear what you want me to do here."
|
|
||||||
assert not (return_code_pred and precomputed_code_embeddings is not None), "I cannot compute a code_pred output for you."
|
|
||||||
|
|
||||||
unused_params = []
|
unused_params = []
|
||||||
if not return_code_pred:
|
|
||||||
unused_params.extend(list(self.mel_head.parameters()))
|
|
||||||
if conditioning_free:
|
if conditioning_free:
|
||||||
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, x.shape[-1])
|
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, x.shape[-1])
|
||||||
unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters()))
|
unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters()))
|
||||||
unused_params.extend(list(self.latent_conditioner.parameters()))
|
unused_params.extend(list(self.latent_conditioner.parameters()))
|
||||||
else:
|
else:
|
||||||
if precomputed_code_embeddings is not None:
|
if precomputed_aligned_embeddings is not None:
|
||||||
code_emb = precomputed_code_embeddings
|
code_emb = precomputed_aligned_embeddings
|
||||||
cond_emb = precomputed_cond_embeddings
|
|
||||||
else:
|
else:
|
||||||
code_emb, cond_emb, mel_pred = self.timestep_independent(codes, conditioning_input, x.shape[-1], prenet_latent, True)
|
code_emb, mel_pred = self.timestep_independent(aligned_conditioning, conditioning_input, x.shape[-1], True)
|
||||||
if prenet_latent is None:
|
if is_latent(aligned_conditioning):
|
||||||
unused_params.extend(list(self.latent_conditioner.parameters()) + [self.latent_fade])
|
unused_params.extend(list(self.code_converter.parameters()) + list(self.code_embedding.parameters()))
|
||||||
|
else:
|
||||||
|
unused_params.extend(list(self.latent_conditioner.parameters()))
|
||||||
|
|
||||||
unused_params.append(self.unconditioned_embedding)
|
unused_params.append(self.unconditioned_embedding)
|
||||||
|
|
||||||
blk_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) + cond_emb
|
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
||||||
|
code_emb = self.conditioning_timestep_integrator(code_emb, time_emb)
|
||||||
x = self.inp_block(x)
|
x = self.inp_block(x)
|
||||||
x = torch.cat([x, code_emb], dim=1)
|
x = torch.cat([x, code_emb], dim=1)
|
||||||
x = self.integrating_conv(x)
|
x = self.integrating_conv(x)
|
||||||
|
@ -298,7 +289,7 @@ class FlatDiffusion(nn.Module):
|
||||||
else:
|
else:
|
||||||
# First and last blocks will have autocast disabled for improved precision.
|
# First and last blocks will have autocast disabled for improved precision.
|
||||||
with autocast(x.device.type, enabled=self.enable_fp16 and i != 0):
|
with autocast(x.device.type, enabled=self.enable_fp16 and i != 0):
|
||||||
x = lyr(x, blk_emb)
|
x = lyr(x, time_emb)
|
||||||
|
|
||||||
x = x.float()
|
x = x.float()
|
||||||
out = self.out(x)
|
out = self.out(x)
|
||||||
|
@ -318,7 +309,7 @@ class FlatDiffusion(nn.Module):
|
||||||
conditioning_input.shape) == 3 else conditioning_input
|
conditioning_input.shape) == 3 else conditioning_input
|
||||||
conds = []
|
conds = []
|
||||||
for j in range(speech_conditioning_input.shape[1]):
|
for j in range(speech_conditioning_input.shape[1]):
|
||||||
conds.append(self.conditioning_embedder(speech_conditioning_input[:, j]))
|
conds.append(self.contextual_embedder(speech_conditioning_input[:, j]))
|
||||||
conds = torch.cat(conds, dim=-1)
|
conds = torch.cat(conds, dim=-1)
|
||||||
return conds.mean(dim=-1)
|
return conds.mean(dim=-1)
|
||||||
|
|
||||||
|
@ -329,11 +320,13 @@ def register_flat_diffusion(opt_net, opt):
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
clip = torch.randn(2, 256, 400)
|
clip = torch.randn(2, 256, 400)
|
||||||
aligned_latent = torch.randn(2,100,512)
|
aligned_latent = torch.randn(2,388,512)
|
||||||
aligned_sequence = torch.randint(0,8,(2,100,8))
|
aligned_sequence = torch.randint(0,8,(2,100,8))
|
||||||
cond = torch.randn(2, 256, 400)
|
cond = torch.randn(2, 256, 400)
|
||||||
ts = torch.LongTensor([600, 600])
|
ts = torch.LongTensor([600, 600])
|
||||||
model = FlatDiffusion(512, layer_drop=.3, unconditioned_percentage=.5)
|
model = FlatDiffusion(512, layer_drop=.3, unconditioned_percentage=.5, train_mel_head=True)
|
||||||
|
# Test with latent aligned conditioning
|
||||||
|
#o = model(clip, ts, aligned_latent, cond)
|
||||||
|
# Test with sequence aligned conditioning
|
||||||
o = model(clip, ts, aligned_sequence, cond, return_code_pred=True)
|
o = model(clip, ts, aligned_sequence, cond, return_code_pred=True)
|
||||||
o = model(clip, ts, aligned_sequence, cond, aligned_latent)
|
|
||||||
|
|
||||||
|
|
|
@ -68,7 +68,6 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
||||||
self.diffusion_fn = self.perform_diffusion_from_codes
|
self.diffusion_fn = self.perform_diffusion_from_codes
|
||||||
self.local_modules['codegen'] = get_music_codegen()
|
self.local_modules['codegen'] = get_music_codegen()
|
||||||
self.spec_fn = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 22000, 'normalize': True, 'in': 'in', 'out': 'out'}, {})
|
self.spec_fn = TorchMelSpectrogramInjector({'n_mel_channels': 256, 'mel_fmax': 22000, 'normalize': True, 'in': 'in', 'out': 'out'}, {})
|
||||||
self.spec_100_fn = TorchMelSpectrogramInjector({'n_mel_channels': 100, 'mel_fmax': 22000, 'normalize': True, 'in': 'in', 'out': 'out'}, {})
|
|
||||||
|
|
||||||
def load_data(self, path):
|
def load_data(self, path):
|
||||||
return list(glob(f'{path}/*.wav'))
|
return list(glob(f'{path}/*.wav'))
|
||||||
|
@ -167,21 +166,20 @@ class MusicDiffusionFid(evaluator.Evaluator):
|
||||||
mel = self.spec_fn({'in': audio})['out']
|
mel = self.spec_fn({'in': audio})['out']
|
||||||
codegen = self.local_modules['codegen'].to(mel.device)
|
codegen = self.local_modules['codegen'].to(mel.device)
|
||||||
codes = codegen.get_codes(mel)
|
codes = codegen.get_codes(mel)
|
||||||
mel100 = self.spec_100_fn({'in': audio})['out']
|
mel_norm = normalize_mel(mel)
|
||||||
mel100_norm = normalize_mel(mel100)
|
precomputed = self.model.timestep_independent(aligned_conditioning=codes, conditioning_input=mel[:,:,:112],
|
||||||
precomputed_codes, precomputed_cond = self.model.timestep_independent(codes=codes, conditioning_input=mel100_norm[:,:,:112],
|
expected_seq_len=mel_norm.shape[-1], return_code_pred=False)
|
||||||
expected_seq_len=mel100_norm.shape[-1], return_code_pred=False)
|
gen_mel = self.diffuser.p_sample_loop(self.model, mel_norm.shape, noise=torch.zeros_like(mel_norm),
|
||||||
gen_mel = self.diffuser.p_sample_loop(self.model, mel100_norm.shape,
|
model_kwargs={'precomputed_aligned_embeddings': precomputed})
|
||||||
model_kwargs={'precomputed_code_embeddings': precomputed_codes, 'precomputed_cond_embeddings': precomputed_cond})
|
|
||||||
|
|
||||||
#gen_mel_denorm = denormalize_mel(gen_mel)
|
gen_mel_denorm = denormalize_mel(gen_mel)
|
||||||
#output_shape = (1,16,audio.shape[-1]//16)
|
output_shape = (1,16,audio.shape[-1]//16)
|
||||||
#self.spec_decoder = self.spec_decoder.to(audio.device)
|
self.spec_decoder = self.spec_decoder.to(audio.device)
|
||||||
#gen_wav = self.diffuser.p_sample_loop(self.spec_decoder, output_shape, model_kwargs={'aligned_conditioning': gen_mel_denorm})
|
gen_wav = self.diffuser.p_sample_loop(self.spec_decoder, output_shape, model_kwargs={'aligned_conditioning': gen_mel_denorm})
|
||||||
#gen_wav = pixel_shuffle_1d(gen_wav, 16)
|
gen_wav = pixel_shuffle_1d(gen_wav, 16)
|
||||||
|
|
||||||
|
return gen_wav, real_resampled, gen_mel, mel_norm, sample_rate
|
||||||
|
|
||||||
#return gen_wav, real_resampled, gen_mel, mel_norm, sample_rate
|
|
||||||
return real_resampled.unsqueeze(0), real_resampled, gen_mel, mel100_norm, sample_rate
|
|
||||||
|
|
||||||
def project(self, sample, sample_rate):
|
def project(self, sample, sample_rate):
|
||||||
sample = torchaudio.functional.resample(sample, sample_rate, 22050)
|
sample = torchaudio.functional.resample(sample, sample_rate, 22050)
|
||||||
|
|
Loading…
Reference in New Issue
Block a user