forked from mrq/DL-Art-School
...
This commit is contained in:
parent
12b57bbd03
commit
4b92191880
|
@ -2,7 +2,7 @@ import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
|
||||||
from models.archs.RRDBNet_arch import RRDB, RRDBWithBypass
|
from models.archs.RRDBNet_arch import RRDB, RRDBWithBypass
|
||||||
from models.archs.arch_util import ConvBnLelu, ConvGnLelu, ExpansionBlock, ConvGnSilu, ResidualBlockGN
|
from models.archs.arch_util import ConvBnLelu, ConvGnLelu, ExpansionBlock, ConvGnSilu
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
from models.archs.SwitchedResidualGenerator_arch import gather_2d
|
from models.archs.SwitchedResidualGenerator_arch import gather_2d
|
||||||
from models.archs.pyramid_arch import Pyramid
|
from models.archs.pyramid_arch import Pyramid
|
||||||
|
@ -666,15 +666,10 @@ class PyramidDiscriminator(nn.Module):
|
||||||
def __init__(self, in_nc, nf, block=ConvGnLelu):
|
def __init__(self, in_nc, nf, block=ConvGnLelu):
|
||||||
super(PyramidDiscriminator, self).__init__()
|
super(PyramidDiscriminator, self).__init__()
|
||||||
self.initial_conv = block(in_nc, nf, kernel_size=3, stride=2, bias=True, norm=False, activation=True)
|
self.initial_conv = block(in_nc, nf, kernel_size=3, stride=2, bias=True, norm=False, activation=True)
|
||||||
self.top_proc = nn.Sequential(*[ResidualBlockGN(nf),
|
self.top_proc = nn.Sequential(*[ConvGnLelu(nf, nf, kernel_size=3, stride=2, bias=False, norm=True, activation=True)])
|
||||||
ResidualBlockGN(nf),
|
|
||||||
ResidualBlockGN(nf)])
|
|
||||||
self.pyramid = Pyramid(nf, depth=3, processing_convs_per_layer=2, processing_at_point=2,
|
self.pyramid = Pyramid(nf, depth=3, processing_convs_per_layer=2, processing_at_point=2,
|
||||||
scale_per_level=1.5, norm=True, return_outlevels=False)
|
scale_per_level=1.5, norm=True, return_outlevels=False)
|
||||||
self.bottom_proc = nn.Sequential(*[ResidualBlockGN(nf),
|
self.bottom_proc = nn.Sequential(*[
|
||||||
ResidualBlockGN(nf),
|
|
||||||
ResidualBlockGN(nf),
|
|
||||||
ResidualBlockGN(nf),
|
|
||||||
ConvGnLelu(nf, nf // 2, kernel_size=1, activation=True, norm=True, bias=True),
|
ConvGnLelu(nf, nf // 2, kernel_size=1, activation=True, norm=True, bias=True),
|
||||||
ConvGnLelu(nf // 2, nf // 4, kernel_size=1, activation=True, norm=True, bias=True),
|
ConvGnLelu(nf // 2, nf // 4, kernel_size=1, activation=True, norm=True, bias=True),
|
||||||
ConvGnLelu(nf // 4, 1, activation=False, norm=False, bias=True)])
|
ConvGnLelu(nf // 4, 1, activation=False, norm=False, bias=True)])
|
||||||
|
|
Loading…
Reference in New Issue
Block a user