From 4d29b7729e4d2e9f57f91df09f991e6d93ff0b31 Mon Sep 17 00:00:00 2001 From: James Betker Date: Sun, 27 Sep 2020 11:18:45 -0600 Subject: [PATCH] Model arch cleanup --- codes/models/archs/AttentionResnet.py | 80 ------- .../models/archs/FlatProcessorNetNew_arch.py | 134 ----------- codes/models/archs/FlatProcessorNet_arch.py | 122 ---------- codes/models/archs/HighToLowResNet.py | 86 ------- codes/models/archs/NestedSwitchGenerator.py | 226 ------------------ 5 files changed, 648 deletions(-) delete mode 100644 codes/models/archs/AttentionResnet.py delete mode 100644 codes/models/archs/FlatProcessorNetNew_arch.py delete mode 100644 codes/models/archs/FlatProcessorNet_arch.py delete mode 100644 codes/models/archs/HighToLowResNet.py delete mode 100644 codes/models/archs/NestedSwitchGenerator.py diff --git a/codes/models/archs/AttentionResnet.py b/codes/models/archs/AttentionResnet.py deleted file mode 100644 index ea57889a..00000000 --- a/codes/models/archs/AttentionResnet.py +++ /dev/null @@ -1,80 +0,0 @@ -import torch -import torch.nn as nn -import numpy as np -import torch.nn.functional as F - -def conv3x3(in_planes, out_planes, stride=1): - """3x3 convolution with padding""" - return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, - padding=1, bias=False) - -def conv5x5(in_planes, out_planes, stride=1): - """5x5 convolution with padding""" - return nn.Conv2d(in_planes, out_planes, kernel_size=5, stride=stride, - padding=2, bias=False) - -def conv7x7(in_planes, out_planes, stride=1): - """7x7 convolution with padding""" - return nn.Conv2d(in_planes, out_planes, kernel_size=7, stride=stride, - padding=3, bias=False) - -def conv1x1(in_planes, out_planes, stride=1): - """1x1 convolution""" - return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) - -class SequenceDistributed(nn.Module): - def __init__(self, module, batch_first=False): - super(SequenceDistributed, self).__init__() - self.module = module - self.batch_first = batch_first - - def forward(self, x): - if len(x.size()) <= 2: - return self.module(x) - - # Squash samples and timesteps into a single axis - x_reshape = x.contiguous().view(-1, x.size(-1)) # (samples * timesteps, input_size) - - y = self.module(x_reshape) - - # We have to reshape Y - if self.batch_first: - y = y.contiguous().view(x.size(0), -1, y.size(-1)) # (samples, timesteps, output_size) - else: - y = y.view(-1, x.size(1), y.size(-1)) # (timesteps, samples, output_size) - - return y - -# Input into this block is of shape (sequence, filters, width, height) -# Output is (attention_hidden_size, width, height) -class ConvAttentionBlock(nn.Module): - - def __init__(self, planes, attention_hidden_size=8, query_conv=conv1x1, key_conv=conv1x1, value_conv=conv1x1): - super(ConvAttentionBlock, self).__init__() - self.query_conv_dist = SequenceDistributed(query_conv(planes, attention_hidden_size)) - self.key_conv_dist = SequenceDistributed(key_conv(planes, attention_hidden_size)) - self.value_conv_dist = value_conv(planes, attention_hidden_size) - self.hidden_size = attention_hidden_size - - def forward(self, x): - # All values come out of this with the shape (batch, sequence, hidden, width, height) - query = self.query_conv_dist(x) - key = self.key_conv_dist(x) - value = self.value_conv_dist(x) - - # Permute to (batch, width, height, sequence, hidden) - query = query.permute(0, 3, 4, 1, 2) - key = key.permute(0, 3, 4, 1, 2) - value = value.permute(0, 3, 4, 1, 2) - - # Perform attention operation. - scores = torch.matmul(query, key.transpose(-2, -1)) / torch.sqrt(self.hidden_size) - scores = torch.softmax(scores, dim=-1) - result = torch.matmul(scores, value) - - # Collapse out the sequence dim. - result = torch.sum(result, dim=-2) - - # Permute back to (batch, hidden, width, height) - result = result.permute(0, 3, 1, 2) - return result diff --git a/codes/models/archs/FlatProcessorNetNew_arch.py b/codes/models/archs/FlatProcessorNetNew_arch.py deleted file mode 100644 index bc164fcf..00000000 --- a/codes/models/archs/FlatProcessorNetNew_arch.py +++ /dev/null @@ -1,134 +0,0 @@ -import torch -import torch.nn as nn -import numpy as np -import torch.nn.functional as F - - -def conv3x3(in_planes, out_planes, stride=1): - """3x3 convolution with padding""" - return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, - padding=1, bias=False) - - -def conv1x1(in_planes, out_planes, stride=1): - """1x1 convolution""" - return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) - - -class FixupBasicBlock(nn.Module): - expansion = 1 - - def __init__(self, inplanes, planes, stride=1, downsample=None): - super(FixupBasicBlock, self).__init__() - # Both self.conv1 and self.downsample layers downsample the input when stride != 1 - self.bias1a = nn.Parameter(torch.zeros(1)) - self.conv1 = conv3x3(inplanes, planes, stride) - self.bn1 = nn.BatchNorm2d(planes, affine=True) - self.bias1b = nn.Parameter(torch.zeros(1)) - self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) - self.bias2a = nn.Parameter(torch.zeros(1)) - self.conv2 = conv3x3(planes, planes) - self.bn2 = nn.BatchNorm2d(planes, affine=True) - self.scale = nn.Parameter(torch.ones(1)) - self.bias2b = nn.Parameter(torch.zeros(1)) - self.downsample = downsample - self.stride = stride - - def forward(self, x): - identity = x - - out = self.conv1(x + self.bias1a) - out = self.lrelu(out + self.bias1b) - - out = self.conv2(out + self.bias2a) - out = out * self.scale + self.bias2b - - if self.downsample is not None: - identity = self.downsample(x + self.bias1a) - - out += identity - out = self.lrelu(out) - - return out - - -class FixupResNet(nn.Module): - - def __init__(self, block, num_filters, layers, num_classes=1000): - super(FixupResNet, self).__init__() - self.num_layers = sum(layers) - self.bias1 = nn.Parameter(torch.zeros(1)) - self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) - self.pixel_shuffle = nn.PixelShuffle(2) - - # 4 input channels, including the noise. - self.conv1 = nn.Conv2d(4, num_filters, kernel_size=7, stride=2, padding=3, - bias=False) - - self.inplanes = num_filters - self.down_layer1 = self._make_layer(block, num_filters, layers[0]) - self.down_layer2 = self._make_layer(block, num_filters, layers[1], stride=2) - self.down_layer3 = self._make_layer(block, num_filters * 4, layers[2], stride=2) - self.down_layer4 = self._make_layer(block, num_filters * 16, layers[3], stride=2) - - self.inplanes = num_filters * 4 - self.up_layer1 = self._make_layer(block, num_filters * 4, layers[4], stride=1) - self.inplanes = num_filters - self.up_layer2 = self._make_layer(block, num_filters, layers[5], stride=1) - - self.defilter = nn.Conv2d(num_filters, 3, kernel_size=5, stride=1, padding=2, bias=False) - - for m in self.modules(): - if isinstance(m, FixupBasicBlock): - nn.init.normal_(m.conv1.weight, mean=0, std=np.sqrt(2 / (m.conv1.weight.shape[0] * np.prod(m.conv1.weight.shape[2:]))) * self.num_layers ** (-0.5)) - nn.init.constant_(m.conv2.weight, 0) - if m.downsample is not None: - nn.init.normal_(m.downsample.weight, mean=0, std=np.sqrt(2 / (m.downsample.weight.shape[0] * np.prod(m.downsample.weight.shape[2:])))) - elif isinstance(m, nn.Linear): - nn.init.constant_(m.weight, 0) - nn.init.constant_(m.bias, 0) - - def _make_layer(self, block, planes, blocks, stride=1): - downsample = None - if stride != 1 or self.inplanes != planes * block.expansion: - downsample = conv1x1(self.inplanes, planes * block.expansion, stride) - - layers = [] - layers.append(block(self.inplanes, planes, stride, downsample)) - self.inplanes = planes * block.expansion - for _ in range(1, blocks): - layers.append(block(self.inplanes, planes)) - - return nn.Sequential(*layers) - - def forward(self, x): - skip = x - - # Noise has the same shape as the input with only one channel. - rand_feature = torch.randn((x.shape[0], 1) + x.shape[2:], device=x.device, dtype=x.dtype) - x = torch.cat([x, rand_feature], dim=1) - - x = self.conv1(x) - x = self.lrelu(x + self.bias1) - - x = self.down_layer1(x) - x = self.down_layer2(x) - x = self.down_layer3(x) - x = self.down_layer4(x) - - x = self.pixel_shuffle(x) - x = self.up_layer1(x) - x = self.pixel_shuffle(x) - x = self.up_layer2(x) - - x = self.defilter(x) - - base = F.interpolate(skip, scale_factor=.25, mode='bilinear', align_corners=False) - return x + base - - -def fixup_resnet34(num_filters, **kwargs): - """Constructs a Fixup-ResNet-34 model. - """ - model = FixupResNet(FixupBasicBlock, num_filters, [3, 4, 6, 3, 2, 2], **kwargs) - return model \ No newline at end of file diff --git a/codes/models/archs/FlatProcessorNet_arch.py b/codes/models/archs/FlatProcessorNet_arch.py deleted file mode 100644 index 504487b8..00000000 --- a/codes/models/archs/FlatProcessorNet_arch.py +++ /dev/null @@ -1,122 +0,0 @@ -import functools -import torch.nn as nn -import torch.nn.functional as F -import models.archs.arch_util as arch_util -import torch - -class ReduceAnnealer(nn.Module): - ''' - Reduces an image dimensionality by half and performs a specified number of residual blocks on it before - `annealing` the filter count to the same as the input filter count. - - To reduce depth, accepts an interpolated "trunk" input which is summed with the output of the RA block before - returning. - - Returns a tuple in the forward pass. The first return is the annealed output. The second is the output before - annealing (e.g. number_filters=input*4) which can be be used for upsampling. - ''' - - def __init__(self, number_filters, residual_blocks): - super(ReduceAnnealer, self).__init__() - self.reducer = nn.Conv2d(number_filters, number_filters*4, 3, stride=2, padding=1, bias=True) - self.res_trunk = arch_util.make_layer(functools.partial(arch_util.ResidualBlock, nf=number_filters*4), residual_blocks) - self.annealer = nn.Conv2d(number_filters*4, number_filters, 3, stride=1, padding=1, bias=True) - self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) - arch_util.initialize_weights([self.reducer, self.annealer], .1) - self.bn_reduce = nn.BatchNorm2d(number_filters*4, affine=True) - self.bn_anneal = nn.BatchNorm2d(number_filters*4, affine=True) - - def forward(self, x, interpolated_trunk): - out = self.lrelu(self.bn_reduce(self.reducer(x))) - out = self.lrelu(self.bn_anneal(self.res_trunk(out))) - annealed = self.lrelu(self.annealer(out)) + interpolated_trunk - return annealed, out - -class Assembler(nn.Module): - ''' - Upsamples a given input using PixelShuffle. Then upsamples this input further and adds in a residual raw input from - a corresponding upstream ReduceAnnealer. Finally performs processing using ResNet blocks. - ''' - def __init__(self, number_filters, residual_blocks): - super(Assembler, self).__init__() - self.pixel_shuffle = nn.PixelShuffle(2) - self.upsampler = nn.Conv2d(number_filters, number_filters*4, 3, stride=1, padding=1, bias=True) - self.res_trunk = arch_util.make_layer(functools.partial(arch_util.ResidualBlock, nf=number_filters*4), residual_blocks) - self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) - self.bn = nn.BatchNorm2d(number_filters*4, affine=True) - self.bn_up = nn.BatchNorm2d(number_filters*4, affine=True) - - def forward(self, input, skip_raw): - out = self.pixel_shuffle(input) - out = self.bn_up(self.upsampler(out)) + skip_raw - out = self.lrelu(self.bn(self.res_trunk(out))) - return out - -class FlatProcessorNet(nn.Module): - ''' - Specialized network that tries to perform a near-equal amount of processing on each of 5 downsampling steps. Image - is then upsampled to a specified size with a similarly flat amount of processing. - - This network automatically applies a noise vector on the inputs to provide entropy for processing. - ''' - def __init__(self, in_nc=3, out_nc=3, nf=64, reduce_anneal_blocks=4, assembler_blocks=2, downscale=4): - super(FlatProcessorNet, self).__init__() - - assert downscale in [1, 2, 4], "Requested downscale not supported; %i" % (downscale, ) - self.downscale = downscale - - # We will always apply a noise channel to the inputs, account for that here. - in_nc += 1 - - # We need two layers to move the image into the filter space in which we will perform most of the work. - self.conv_first = nn.Conv2d(in_nc, nf, 3, stride=1, padding=1, bias=True) - self.conv_last = nn.Conv2d(nf*4, out_nc, 3, stride=1, padding=1, bias=True) - self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) - - # Torch modules need to have all submodules as explicit class members. So make those, then add them into an - # array for easier logic in forward(). - self.ra1 = ReduceAnnealer(nf, reduce_anneal_blocks) - self.ra2 = ReduceAnnealer(nf, reduce_anneal_blocks) - self.ra3 = ReduceAnnealer(nf, reduce_anneal_blocks) - self.ra4 = ReduceAnnealer(nf, reduce_anneal_blocks) - self.ra5 = ReduceAnnealer(nf, reduce_anneal_blocks) - self.reducers = [self.ra1, self.ra2, self.ra3, self.ra4, self.ra5] - - # Produce assemblers for all possible downscale variants. Some may not be used. - self.assembler1 = Assembler(nf, assembler_blocks) - self.assembler2 = Assembler(nf, assembler_blocks) - self.assembler3 = Assembler(nf, assembler_blocks) - self.assembler4 = Assembler(nf, assembler_blocks) - self.assemblers = [self.assembler1, self.assembler2, self.assembler3, self.assembler4] - - # Initialization - arch_util.initialize_weights([self.conv_first, self.conv_last], .1) - - def forward(self, x): - # Noise has the same shape as the input with only one channel. - rand_feature = torch.randn((x.shape[0], 1) + x.shape[2:], device=x.device, dtype=x.dtype) - out = torch.cat([x, rand_feature], dim=1) - - out = self.lrelu(self.conv_first(out)) - features_trunk = out - raw_values = [] - downsamples = 1 - for ra in self.reducers: - downsamples *= 2 - interpolated = F.interpolate(features_trunk, scale_factor=1/downsamples, mode='bilinear', align_corners=False) - out, raw = ra(out, interpolated) - raw_values.append(raw) - - i = -1 - out = raw_values[-1] - while downsamples != self.downscale: - out = self.assemblers[i](out, raw_values[i-1]) - i -= 1 - downsamples = int(downsamples / 2) - - out = self.conv_last(out) - - basis = x - if downsamples != 1: - basis = F.interpolate(x, scale_factor=1/downsamples, mode='bilinear', align_corners=False) - return basis + out diff --git a/codes/models/archs/HighToLowResNet.py b/codes/models/archs/HighToLowResNet.py deleted file mode 100644 index 623978c9..00000000 --- a/codes/models/archs/HighToLowResNet.py +++ /dev/null @@ -1,86 +0,0 @@ -import functools -import torch.nn as nn -import torch.nn.functional as F -import models.archs.arch_util as arch_util -import torch - - -class HighToLowResNet(nn.Module): - ''' ResNet that applies a noise channel to the input, then downsamples it four times using strides. Finally, the - input is upsampled to the desired downscale. Currently downscale=1,2,4 is supported. - ''' - def __init__(self, in_nc=3, out_nc=3, nf=64, nb=16, downscale=4): - super(HighToLowResNet, self).__init__() - - assert downscale in [1, 2, 4], "Requested downscale not supported; %i" % (downscale, ) - self.downscale = downscale - - # We will always apply a noise channel to the inputs, account for that here. - in_nc += 1 - - self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True) - - # All sub-modules must be explicit members. Make it so. Then add them to a list. - self.trunk1 = arch_util.make_layer(functools.partial(arch_util.ResidualBlock_noBN, nf=nf), 4) - self.trunk2 = arch_util.make_layer(functools.partial(arch_util.ResidualBlock_noBN, nf=nf*2), 6) - self.trunk3 = arch_util.make_layer(functools.partial(arch_util.ResidualBlock_noBN, nf=nf*4), 12) - self.trunk4 = arch_util.make_layer(functools.partial(arch_util.ResidualBlock_noBN, nf=nf*8), 12) - self.trunks = [self.trunk1, self.trunk2, self.trunk3, self.trunk4] - self.trunkshapes = [4, 6, 12, 12] - - self.r1 = nn.Conv2d(nf, nf*2, 3, stride=2, padding=1, bias=True) - self.r2 = nn.Conv2d(nf*2, nf*4, 3, stride=2, padding=1, bias=True) - self.r3 = nn.Conv2d(nf*4, nf*8, 3, stride=2, padding=1, bias=True) - self.reducers = [self.r1, self.r2, self.r3] - - self.pixel_shuffle = nn.PixelShuffle(2) - - self.a1 = nn.Conv2d(nf*2, nf*4, 3, stride=1, padding=1, bias=True) - self.a2 = nn.Conv2d(nf, nf*4, 3, stride=1, padding=1, bias=True) - self.a3 = nn.Conv2d(nf, nf, 3, stride=1, padding=1, bias=True) - self.assemblers = [self.a1, self.a2, self.a3] - - if self.downscale == 1: - nf_last = nf - elif self.downscale == 2: - nf_last = nf * 4 - elif self.downscale == 4: - nf_last = nf * 4 - - self.conv_last = nn.Conv2d(nf_last, out_nc, 3, stride=1, padding=1, bias=True) - - # activation function - self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True) - - # initialization - arch_util.initialize_weights([self.conv_first, self.conv_last] + self.reducers + self.assemblers, - .1) - - def forward(self, x): - # Noise has the same shape as the input with only one channel. - rand_feature = torch.randn((x.shape[0], 1) + x.shape[2:], device=x.device, dtype=x.dtype) - out = torch.cat([x, rand_feature], dim=1) - - out = self.lrelu(self.conv_first(out)) - skips = [] - for i in range(4): - skips.append(out) - out = self.trunks[i](out) - if i < 3: - out = self.lrelu(self.reducers[i](out)) - - target_width = x.shape[-1] / self.downscale - i = 0 - while out.shape[-1] != target_width: - out = self.pixel_shuffle(out) - out = self.lrelu(self.assemblers[i](out)) - out = out + skips[-i-2] - i += 1 - - # TODO: Figure out where this magic number '12' comes from and fix it. - out = 12 * self.conv_last(out) - if self.downscale == 1: - base = x - else: - base = F.interpolate(x, scale_factor=1/self.downscale, mode='bilinear', align_corners=False) - return out + base diff --git a/codes/models/archs/NestedSwitchGenerator.py b/codes/models/archs/NestedSwitchGenerator.py deleted file mode 100644 index eafbb84b..00000000 --- a/codes/models/archs/NestedSwitchGenerator.py +++ /dev/null @@ -1,226 +0,0 @@ -import torch -from torch import nn -from models.archs.arch_util import ConvBnLelu, ConvBnRelu, MultiConvBlock -from switched_conv import BareConvSwitch, compute_attention_specificity -from switched_conv_util import save_attention_to_image -from functools import partial -import torch.nn.functional as F -from collections import OrderedDict - - -class Switch(nn.Module): - def __init__(self, transform_block, transform_count, init_temp=20, pass_chain_forward=False, add_scalable_noise_to_transforms=False): - super(Switch, self).__init__() - - self.transforms = nn.ModuleList([transform_block() for _ in range(transform_count)]) - self.add_noise = add_scalable_noise_to_transforms - self.pass_chain_forward = pass_chain_forward - - # And the switch itself, including learned scalars - self.switch = BareConvSwitch(initial_temperature=init_temp) - self.scale = nn.Parameter(torch.ones(1)) - self.bias = nn.Parameter(torch.zeros(1)) - - # x is the input fed to the transform blocks. - # m is the output of the multiplexer which will be used to select from those transform blocks. - # chain is a chain of shared processing outputs used by the individual transforms. - def forward(self, x, m, chain): - if self.pass_chain_forward: - pcf = [t(x, chain) for t in self.transforms] - xformed = [o[0] for o in pcf] - atts = [o[1] for o in pcf] - else: - if self.add_noise: - rand_feature = torch.randn_like(x) - xformed = [t(x, rand_feature) for t in self.transforms] - else: - xformed = [t(x) for t in self.transforms] - - # Interpolate the multiplexer across the entire shape of the image. - m = F.interpolate(m, size=x.shape[2:], mode='nearest') - - outputs, attention = self.switch(xformed, m, True) - outputs = outputs * self.scale + self.bias - - if self.pass_chain_forward: - # Apply attention weights to collected [atts] and return the aggregate. - atts = torch.stack(atts, dim=3) - attention = atts * attention.unsqueeze(dim=-1) - attention = torch.flatten(attention, 3) - - return outputs, attention - - def set_temperature(self, temp): - self.switch.set_attention_temperature(temp) - if self.pass_chain_forward: - [t.set_temperature(temp) for t in self.transforms] - - -# Convolutional image processing block that optionally reduces image size by a factor of 2 using stride and performs a -# series of conv blocks on it -class Processor(nn.Module): - def __init__(self, base_filters, processing_depth, reduce=False): - super(Processor, self).__init__() - self.output_filter_count = base_filters * (2 if reduce else 1) - self.pre = ConvBnRelu(base_filters, base_filters, kernel_size=3, bias=True) - self.initial = ConvBnRelu(base_filters, self.output_filter_count, kernel_size=1, stride=2 if reduce else 1, bias=False) - self.blocks = nn.Sequential(OrderedDict( - [(str(i), ConvBnRelu(self.output_filter_count, self.output_filter_count, kernel_size=3, bias=False)) for i in range(processing_depth)])) - - def forward(self, x): - x = self.pre(x) - x = self.initial(x) - x = self.blocks(x) - return (x - .39) / .58 - - -# Convolutional image processing block that constricts an input image with a large number of filters to a small number -# of filters over a fixed number of layers. -class Constrictor(nn.Module): - def __init__(self, filters, output_filters): - super(Constrictor, self).__init__() - assert(filters > output_filters) - gap = filters - output_filters - gap_div_4 = int(gap / 4) - self.cbl1 = ConvBnRelu(filters, filters - (gap_div_4 * 2), kernel_size=1, norm=True, bias=True) - self.cbl2 = ConvBnRelu(filters - (gap_div_4 * 2), filters - (gap_div_4 * 3), kernel_size=1, norm=True, bias=False) - self.cbl3 = ConvBnRelu(filters - (gap_div_4 * 3), output_filters, kernel_size=1, activation=False, norm=False, bias=False) - - def forward(self, x): - x = self.cbl1(x) - x = self.cbl2(x) - x = self.cbl3(x) - return x / 2.67 - - -class RecursiveSwitchedTransform(nn.Module): - def __init__(self, transform_filters, filters_count_list, nesting_depth, transforms_at_leaf, - trans_kernel_size, trans_num_layers, trans_scale_init=1, initial_temp=20, add_scalable_noise_to_transforms=False): - super(RecursiveSwitchedTransform, self).__init__() - - self.depth = nesting_depth - at_leaf = (self.depth == 0) - if at_leaf: - transform = partial(MultiConvBlock, transform_filters, transform_filters, transform_filters, kernel_size=trans_kernel_size, depth=trans_num_layers, scale_init=trans_scale_init) - else: - transform = partial(RecursiveSwitchedTransform, transform_filters, filters_count_list, - nesting_depth - 1, transforms_at_leaf, trans_kernel_size, trans_num_layers, trans_scale_init, initial_temp, add_scalable_noise_to_transforms) - selection_breadth = transforms_at_leaf if at_leaf else 2 - self.switch = Switch(transform, selection_breadth, initial_temp, pass_chain_forward=not at_leaf, add_scalable_noise_to_transforms=add_scalable_noise_to_transforms) - self.multiplexer = Constrictor(filters_count_list[self.depth], selection_breadth) - - def forward(self, x, processing_trunk_chain): - proc_out = processing_trunk_chain[self.depth] - m = self.multiplexer(proc_out) - return self.switch(x, m, processing_trunk_chain) - - def set_temperature(self, temp): - self.switch.set_temperature(temp) - - -class NestedSwitchComputer(nn.Module): - def __init__(self, transform_filters, switch_base_filters, num_switch_processing_layers, nesting_depth, transforms_at_leaf, - trans_kernel_size, trans_num_layers, trans_scale_init, initial_temp=20, add_scalable_noise_to_transforms=False): - super(NestedSwitchComputer, self).__init__() - - processing_trunk = [] - filters = [] - current_filters = switch_base_filters - reduce = False # Don't reduce the first layer, but reduce after that. - for _ in range(nesting_depth): - processing_trunk.append(Processor(current_filters, num_switch_processing_layers, reduce=reduce)) - current_filters = processing_trunk[-1].output_filter_count - filters.append(current_filters) - reduce = True - - self.multiplexer_init_conv = ConvBnLelu(transform_filters, switch_base_filters, kernel_size=7, activation=False, norm=False) - self.processing_trunk = nn.ModuleList(processing_trunk) - self.switch = RecursiveSwitchedTransform(transform_filters, filters, nesting_depth-1, transforms_at_leaf, trans_kernel_size, trans_num_layers-1, trans_scale_init, initial_temp=initial_temp, add_scalable_noise_to_transforms=add_scalable_noise_to_transforms) - self.anneal = ConvBnLelu(transform_filters, transform_filters, kernel_size=1, norm=False) - - def forward(self, x): - feed_forward = x - trunk = [] - trunk_input = self.multiplexer_init_conv(x) - for m in self.processing_trunk: - trunk_input = (m(trunk_input) - 3.3) / 12.5 - trunk.append(trunk_input) - - self.trunk = trunk[-1] - x, att = self.switch(x, trunk) - x = x + feed_forward - return feed_forward + self.anneal(x) / .86, att - - def set_temperature(self, temp): - self.switch.set_temperature(temp) - - -class NestedSwitchedGenerator(nn.Module): - def __init__(self, switch_filters, switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes, - trans_layers, transformation_filters, initial_temp=20, final_temperature_step=50000, heightened_temp_min=1, - heightened_final_step=50000, upsample_factor=1, add_scalable_noise_to_transforms=False): - super(NestedSwitchedGenerator, self).__init__() - self.initial_conv = ConvBnLelu(3, transformation_filters, kernel_size=7, activation=False, norm=False) - self.proc_conv = ConvBnLelu(transformation_filters, transformation_filters, norm=False) - self.final_conv = ConvBnLelu(transformation_filters, 3, kernel_size=1, activation=False, norm=False) - - switches = [] - for sw_reduce, sw_proc, trans_count, kernel, layers in zip(switch_reductions, switch_processing_layers, trans_counts, trans_kernel_sizes, trans_layers): - switches.append(NestedSwitchComputer(transform_filters=transformation_filters, switch_base_filters=switch_filters, num_switch_processing_layers=sw_proc, - nesting_depth=sw_reduce, transforms_at_leaf=trans_count, trans_kernel_size=kernel, trans_num_layers=layers, - trans_scale_init=.2, initial_temp=initial_temp, add_scalable_noise_to_transforms=add_scalable_noise_to_transforms)) - self.switches = nn.ModuleList(switches) - - self.transformation_counts = trans_counts - self.init_temperature = initial_temp - self.final_temperature_step = final_temperature_step - self.heightened_temp_min = heightened_temp_min - self.heightened_final_step = heightened_final_step - self.attentions = None - self.upsample_factor = upsample_factor - - def forward(self, x): - x = self.initial_conv(x) / .2 - - self.attentions = [] - for i, sw in enumerate(self.switches): - x, att = sw(x) - self.attentions.append(att) - - if self.upsample_factor > 1: - x = F.interpolate(x, scale_factor=self.upsample_factor, mode="nearest") - - x = self.proc_conv(x) / .85 - x = self.final_conv(x) / 4.6 - return x / 16, - - def set_temperature(self, temp): - [sw.set_temperature(temp) for sw in self.switches] - - def update_for_step(self, step, experiments_path='.'): - if self.attentions: - temp = max(1, int(self.init_temperature * (self.final_temperature_step - step) / self.final_temperature_step)) - if temp == 1 and self.heightened_final_step and self.heightened_final_step != 1: - # Once the temperature passes (1) it enters an inverted curve to match the linear curve from above. - # without this, the attention specificity "spikes" incredibly fast in the last few iterations. - h_steps_total = self.heightened_final_step - self.final_temperature_step - h_steps_current = min(step - self.final_temperature_step, h_steps_total) - # The "gap" will represent the steps that need to be traveled as a linear function. - h_gap = 1 / self.heightened_temp_min - temp = h_gap * h_steps_current / h_steps_total - # Invert temperature to represent reality on this side of the curve - temp = 1 / temp - self.set_temperature(temp) - if step % 50 == 0: - [save_attention_to_image(experiments_path, self.attentions[i], self.transformation_counts[i], step, "a%i" % (i+1,)) for i in range(len(self.switches))] - - def get_debug_values(self, step): - temp = self.switches[0].switch.switch.switch.temperature - mean_hists = [compute_attention_specificity(att, 2) for att in self.attentions] - means = [i[0] for i in mean_hists] - hists = [i[1].clone().detach().cpu().flatten() for i in mean_hists] - val = {"switch_temperature": temp} - for i in range(len(means)): - val["switch_%i_specificity" % (i,)] = means[i] - val["switch_%i_histogram" % (i,)] = hists[i] - return val \ No newline at end of file