diff --git a/codes/trainer/eval/music_diffusion_fid.py b/codes/trainer/eval/music_diffusion_fid.py index c6f8d666..16eeff1b 100644 --- a/codes/trainer/eval/music_diffusion_fid.py +++ b/codes/trainer/eval/music_diffusion_fid.py @@ -223,36 +223,23 @@ class MusicDiffusionFid(evaluator.Evaluator): cheater = self.local_modules['cheater_encoder'].to(audio.device)(mel_norm) # 1. Generate the cheater latent using the input as a reference. - gen_cheater = self.diffuser.ddim_sample_loop(self.model, cheater.shape, progress=True, - model_kwargs={'conditioning_input': cheater}, - causal=self.causal, causal_slope=self.causal_slope) + gen_cheater = self.diffuser.ddim_sample_loop(self.model, cheater.shape, progress=True, model_kwargs={'conditioning_input': cheater}) - # 2. Decode the cheater into a MEL. This operation and the next need to be chunked to make them feasible to perform within GPU memory. - chunks = torch.split(gen_cheater, 64, dim=-1) - gen_mels = [] - gen_wavs = [] - for chunk in tqdm(chunks): - gen_mel = self.cheater_decoder_diffuser.ddim_sample_loop(self.local_modules['cheater_decoder'].diff.to(audio.device), (1,256,chunk.shape[-1]*16), progress=True, - model_kwargs={'codes': chunk.permute(0,2,1)}) - gen_mels.append(gen_mel) + # 2. Decode the cheater into a MEL + gen_mel = self.cheater_decoder_diffuser.ddim_sample_loop(self.local_modules['cheater_decoder'].diff.to(audio.device), (1,256,gen_cheater.shape[-1]*16), progress=True, + model_kwargs={'codes': gen_cheater.permute(0,2,1)}) - # 3. And then the MEL back into a spectrogram - output_shape = (1,16,audio.shape[-1]//(16*len(chunks))) - self.spec_decoder = self.spec_decoder.to(audio.device) - gen_mel_denorm = denormalize_mel(gen_mel) - gen_wav = self.spectral_diffuser.p_sample_loop(self.spec_decoder, output_shape, - model_kwargs={'codes': gen_mel_denorm}) - gen_wav = pixel_shuffle_1d(gen_wav, 16) - gen_wavs.append(gen_wav) - gen_mel = torch.cat(gen_mels, dim=-1) - gen_wav = torch.cat(gen_wavs, dim=-1) + # 3. And then the MEL back into a spectrogram + output_shape = (1,16,audio.shape[-1]//16) + self.spec_decoder = self.spec_decoder.to(audio.device) + gen_mel_denorm = denormalize_mel(gen_mel) + gen_wav = self.spectral_diffuser.p_sample_loop(self.spec_decoder, output_shape, + model_kwargs={'codes': gen_mel_denorm}) + gen_wav = pixel_shuffle_1d(gen_wav, 16) - if audio.shape[-1] < 40 * 22050: - real_wav = self.spectral_diffuser.p_sample_loop(self.spec_decoder, output_shape, - model_kwargs={'codes': mel}) - real_wav = pixel_shuffle_1d(real_wav, 16) - else: - real_wav = audio # TODO: chunk like above. + real_wav = self.spectral_diffuser.p_sample_loop(self.spec_decoder, output_shape, + model_kwargs={'codes': mel}) + real_wav = pixel_shuffle_1d(real_wav, 16) return gen_wav, real_wav.squeeze(0), gen_mel, mel_norm, sample_rate @@ -432,18 +419,18 @@ class MusicDiffusionFid(evaluator.Evaluator): if __name__ == '__main__': - diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_cheater_gen_r8.yml', 'generator', + diffusion = load_model_from_config('X:\\dlas\\experiments\\train_music_cheater_gen_v5\\train.yml', 'generator', also_load_savepoint=False, - load_path='X:\\dlas\\experiments\\train_music_cheater_gen_v5_causal\\models\\1000_generator.pth' + load_path='X:\\dlas\\experiments\\train_music_cheater_gen_v5\\models\\206000_generator_ema.pth' ).cuda() opt_eval = {'path': 'Y:\\split\\yt-music-eval', # eval music, mostly electronica. :) #'path': 'E:\\music_eval', # this is music from the training dataset, including a lot more variety. 'diffusion_steps': 64, 'conditioning_free': True, 'conditioning_free_k': 1, 'use_ddim': True, 'clip_audio': False, 'diffusion_schedule': 'linear', 'diffusion_type': 'cheater_gen', - 'causal': True, 'causal_slope': 4, + #'causal': True, 'causal_slope': 4, #'partial_low': 128, 'partial_high': 192 } - env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 232, 'device': 'cuda', 'opt': {}} + env = {'rank': 0, 'base_path': 'D:\\tmp\\test_eval_music', 'step': 235, 'device': 'cuda', 'opt': {}} eval = MusicDiffusionFid(diffusion, opt_eval, env) print(eval.perform_eval())