forked from mrq/DL-Art-School
Distributed FID dataset across processes
This commit is contained in:
parent
6b32c87dcb
commit
545f2db170
|
@ -9,7 +9,7 @@ import trainer.eval.evaluator as evaluator
|
|||
|
||||
from pytorch_fid import fid_score
|
||||
from data import create_dataset
|
||||
from torch.utils.data import DataLoader
|
||||
from torch.utils.data import DataLoader, DistributedSampler, SequentialSampler
|
||||
|
||||
from trainer.injectors.gaussian_diffusion_injector import GaussianDiffusionInferenceInjector
|
||||
from utils.util import opt_get
|
||||
|
@ -23,6 +23,10 @@ class SrDiffusionFidEvaluator(evaluator.Evaluator):
|
|||
self.fid_batch_size = opt_get(opt_eval, ['fid_batch_size'], 64)
|
||||
assert self.batch_sz is not None
|
||||
self.dataset = create_dataset(opt_eval['dataset'])
|
||||
if torch.distributed.is_available() and torch.distributed.is_initialized():
|
||||
self.sampler = DistributedSampler(self.dataset, shuffle=False, drop_last=True)
|
||||
else:
|
||||
self.sampler = SequentialSampler(self.dataset)
|
||||
self.fid_real_samples = opt_eval['dataset']['paths'] # This is assumed to exist for the given dataset.
|
||||
assert isinstance(self.fid_real_samples, str)
|
||||
self.gd = GaussianDiffusionInferenceInjector(opt_eval['diffusion_params'], env)
|
||||
|
@ -31,7 +35,7 @@ class SrDiffusionFidEvaluator(evaluator.Evaluator):
|
|||
def perform_eval(self):
|
||||
# Attempt to make the dataset deterministic.
|
||||
self.dataset.reset_random()
|
||||
dataloader = DataLoader(self.dataset, self.batch_sz, shuffle=False, num_workers=0)
|
||||
dataloader = DataLoader(self.dataset, self.batch_sz, sampler=self.sampler, num_workers=0)
|
||||
|
||||
fid_fake_path = osp.join(self.env['base_path'], "..", "fid", str(self.env["step"]))
|
||||
os.makedirs(fid_fake_path, exist_ok=True)
|
||||
|
|
Loading…
Reference in New Issue
Block a user