forked from mrq/DL-Art-School
default to residual encoder
This commit is contained in:
parent
f432bdf7ae
commit
560b83e770
|
@ -371,30 +371,6 @@ class Mel2Vec(nn.Module):
|
|||
self.input_blocks = nn.Sequential(nn.Conv1d(mel_input_channels, inner_dim//2, kernel_size=5, padding=2, stride=2),
|
||||
nn.GroupNorm(num_groups=8, num_channels=inner_dim//2, affine=True),
|
||||
nn.GELU(),
|
||||
nn.Conv1d(inner_dim//2, inner_dim, kernel_size=3, padding=1, stride=2),
|
||||
nn.GELU(),
|
||||
nn.Conv1d(inner_dim, inner_dim, kernel_size=3, padding=1),
|
||||
nn.GELU(),
|
||||
)
|
||||
self.dim_reduction_mult = 4
|
||||
elif feature_producer_type == 'residual':
|
||||
self.input_blocks = nn.Sequential(nn.Conv1d(mel_input_channels, inner_dim//2, kernel_size=5, padding=2, stride=2),
|
||||
nn.GroupNorm(num_groups=8, num_channels=inner_dim//2, affine=True),
|
||||
nn.GELU(),
|
||||
ResBlock(dims=1, channels=inner_dim//2, dropout=dropout),
|
||||
ResBlock(dims=1, channels=inner_dim//2, dropout=dropout),
|
||||
nn.Conv1d(inner_dim//2, inner_dim, kernel_size=3, padding=1, stride=2),
|
||||
nn.GELU(),
|
||||
ResBlock(dims=1, channels=inner_dim, dropout=dropout),
|
||||
ResBlock(dims=1, channels=inner_dim, dropout=dropout),
|
||||
)
|
||||
self.dim_reduction_mult = 4
|
||||
elif feature_producer_type == 'deep_residual':
|
||||
self.input_blocks = nn.Sequential(nn.Conv1d(mel_input_channels, inner_dim//2, kernel_size=5, padding=2, stride=2),
|
||||
nn.GroupNorm(num_groups=8, num_channels=inner_dim//2, affine=True),
|
||||
nn.GELU(),
|
||||
ResBlock(dims=1, channels=inner_dim//2, dropout=dropout),
|
||||
ResBlock(dims=1, channels=inner_dim//2, dropout=dropout),
|
||||
ResBlock(dims=1, channels=inner_dim//2, dropout=dropout),
|
||||
ResBlock(dims=1, channels=inner_dim//2, dropout=dropout),
|
||||
ResBlock(dims=1, channels=inner_dim//2, dropout=dropout),
|
||||
|
@ -411,12 +387,20 @@ class Mel2Vec(nn.Module):
|
|||
self.input_blocks = nn.Sequential(nn.Conv1d(mel_input_channels, inner_dim//4, kernel_size=5, padding=2, stride=2),
|
||||
nn.GroupNorm(num_groups=8, num_channels=inner_dim//4, affine=True),
|
||||
nn.GELU(),
|
||||
ResBlock(dims=1, channels=inner_dim//4, dropout=dropout),
|
||||
ResBlock(dims=1, channels=inner_dim//4, dropout=dropout),
|
||||
nn.Conv1d(inner_dim//4, inner_dim//2, kernel_size=3, padding=1, stride=2),
|
||||
nn.GELU(),
|
||||
ResBlock(dims=1, channels=inner_dim//2, dropout=dropout),
|
||||
ResBlock(dims=1, channels=inner_dim//2, dropout=dropout),
|
||||
ResBlock(dims=1, channels=inner_dim//2, dropout=dropout),
|
||||
nn.Conv1d(inner_dim//2, inner_dim, kernel_size=3, padding=1, stride=2),
|
||||
nn.GELU(),
|
||||
nn.Conv1d(inner_dim, inner_dim, kernel_size=3, padding=1),
|
||||
nn.GELU(),
|
||||
ResBlock(dims=1, channels=inner_dim, dropout=dropout),
|
||||
ResBlock(dims=1, channels=inner_dim, dropout=dropout),
|
||||
ResBlock(dims=1, channels=inner_dim, dropout=dropout),
|
||||
ResBlock(dims=1, channels=inner_dim, dropout=dropout),
|
||||
ResBlock(dims=1, channels=inner_dim, dropout=dropout),
|
||||
)
|
||||
self.dim_reduction_mult = 8
|
||||
else:
|
||||
|
|
Loading…
Reference in New Issue
Block a user