resnet_unet_3

I'm being really lazy here - these nets are not really different from each other
except at which layer they terminate. This one terminates at 2x downsampling,
which is simply indicative of a direction I want to go for testing these pixpro networks.
This commit is contained in:
James Betker 2021-01-15 14:51:03 -07:00
parent 038b8654b6
commit 587a4f4050
6 changed files with 668 additions and 10 deletions

View File

@ -328,7 +328,6 @@ class PixelCL(nn.Module):
ppm_gamma = 2,
distance_thres = 0.7,
similarity_temperature = 0.3,
alpha = 1.,
cutout_ratio_range = (0.6, 0.8),
cutout_interpolate_mode = 'nearest',
coord_cutout_interpolate_mode = 'bilinear',
@ -363,7 +362,6 @@ class PixelCL(nn.Module):
self.distance_thres = distance_thres
self.similarity_temperature = similarity_temperature
self.alpha = alpha
# This requirement is due to the way that these are processed, not a hard requirement.
assert math.sqrt(max_latent_dim) == int(math.sqrt(max_latent_dim))
@ -456,7 +454,7 @@ class PixelCL(nn.Module):
l = l[:, :, prob.multinomial(num_samples=self.max_latent_dim, replacement=False)]
# For compatibility with the existing pixpro code, reshape this stochastic sampling back into a 2d "square".
# Note that the actual structure no longer matters going forwards. Pixels are only compared to themselves and others without regards
# to structure.
# to the original image structure.
sqdim = int(math.sqrt(self.max_latent_dim))
extracted.append(l.reshape(b, c, sqdim, sqdim))
proj_pixel_one, proj_pixel_two, target_proj_pixel_one, target_proj_pixel_two = extracted

View File

@ -0,0 +1,86 @@
import torch
import torch.nn as nn
from torchvision.models.resnet import BasicBlock, Bottleneck, conv1x1, conv3x3
from torchvision.models.utils import load_state_dict_from_url
import torchvision
from models.arch_util import ConvBnRelu
from models.pixel_level_contrastive_learning.resnet_unet import ReverseBottleneck
from trainer.networks import register_model
from utils.util import checkpoint, opt_get
class UResNet50_3(torchvision.models.resnet.ResNet):
def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
groups=1, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=None, out_dim=128):
super().__init__(block, layers, num_classes, zero_init_residual, groups, width_per_group,
replace_stride_with_dilation, norm_layer)
if norm_layer is None:
norm_layer = nn.BatchNorm2d
'''
# For reference:
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
dilate=replace_stride_with_dilation[0])
self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
dilate=replace_stride_with_dilation[1])
self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
dilate=replace_stride_with_dilation[2])
'''
uplayers = []
inplanes = 2048
first = True
for i in range(3):
uplayers.append(ReverseBottleneck(inplanes, inplanes // 2, norm_layer=norm_layer, passthrough=not first))
inplanes = inplanes // 2
first = False
self.uplayers = nn.ModuleList(uplayers)
# These two variables are separated out and renamed so that I can re-use parameters from a pretrained resnet_unet2.
self.last_uplayer = ReverseBottleneck(256, 128, norm_layer=norm_layer, passthrough=True)
self.tail3 = nn.Sequential(conv1x1(192, 128),
norm_layer(128),
nn.ReLU(),
conv1x1(128, out_dim))
del self.fc # Not used in this implementation and just consumes a ton of GPU memory.
def _forward_impl(self, x):
x0 = self.relu(self.bn1(self.conv1(x)))
x = self.maxpool(x0)
x1 = checkpoint(self.layer1, x)
x2 = checkpoint(self.layer2, x1)
x3 = checkpoint(self.layer3, x2)
x4 = checkpoint(self.layer4, x3)
unused = self.avgpool(x4) # This is performed for instance-level pixpro learning, even though it is unused.
x = checkpoint(self.uplayers[0], x4)
x = checkpoint(self.uplayers[1], x, x3)
x = checkpoint(self.uplayers[2], x, x2)
x = checkpoint(self.last_uplayer, x, x1)
return checkpoint(self.tail3, torch.cat([x, x0], dim=1))
def forward(self, x):
return self._forward_impl(x)
@register_model
def register_u_resnet50_3(opt_net, opt):
model = UResNet50_3(Bottleneck, [3, 4, 6, 3], out_dim=opt_net['odim'])
if opt_get(opt_net, ['use_pretrained_base'], False):
state_dict = load_state_dict_from_url('https://download.pytorch.org/models/resnet50-19c8e357.pth', progress=True)
model.load_state_dict(state_dict, strict=False)
return model
if __name__ == '__main__':
model = UResNet50_3(Bottleneck, [3,4,6,3])
samp = torch.rand(1,3,224,224)
y = model(samp)
print(y.shape)
# For pixpro: attach to "tail.3"

View File

@ -0,0 +1,249 @@
# Copyright 2018 The Sonnet Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
# Borrowed from https://github.com/rosinality/vq-vae-2-pytorch
# Which was itself orrowed from https://github.com/deepmind/sonnet
import torch
from torch import nn
from torch.nn import functional as F
import torch.distributed as distributed
from trainer.networks import register_model
from utils.util import checkpoint, opt_get
class Quantize(nn.Module):
def __init__(self, dim, n_embed, decay=0.99, eps=1e-5):
super().__init__()
self.dim = dim
self.n_embed = n_embed
self.decay = decay
self.eps = eps
embed = torch.randn(dim, n_embed)
self.register_buffer("embed", embed)
self.register_buffer("cluster_size", torch.zeros(n_embed))
self.register_buffer("embed_avg", embed.clone())
def forward(self, input):
flatten = input.reshape(-1, self.dim)
dist = (
flatten.pow(2).sum(1, keepdim=True)
- 2 * flatten @ self.embed
+ self.embed.pow(2).sum(0, keepdim=True)
)
_, embed_ind = (-dist).max(1)
embed_onehot = F.one_hot(embed_ind, self.n_embed).type(flatten.dtype)
embed_ind = embed_ind.view(*input.shape[:-1])
quantize = self.embed_code(embed_ind)
if self.training:
embed_onehot_sum = embed_onehot.sum(0)
embed_sum = flatten.transpose(0, 1) @ embed_onehot
if distributed.is_initialized() and distributed.get_world_size() > 1:
distributed.all_reduce(embed_onehot_sum)
distributed.all_reduce(embed_sum)
self.cluster_size.data.mul_(self.decay).add_(
embed_onehot_sum, alpha=1 - self.decay
)
self.embed_avg.data.mul_(self.decay).add_(embed_sum, alpha=1 - self.decay)
n = self.cluster_size.sum()
cluster_size = (
(self.cluster_size + self.eps) / (n + self.n_embed * self.eps) * n
)
embed_normalized = self.embed_avg / cluster_size.unsqueeze(0)
self.embed.data.copy_(embed_normalized)
diff = (quantize.detach() - input).pow(2).mean()
quantize = input + (quantize - input).detach()
return quantize, diff, embed_ind
def embed_code(self, embed_id):
return F.embedding(embed_id, self.embed.transpose(0, 1))
class ResBlock(nn.Module):
def __init__(self, in_channel, channel):
super().__init__()
self.conv = nn.Sequential(
nn.ReLU(inplace=True),
nn.Conv2d(in_channel, channel, 3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(channel, in_channel, 1),
)
def forward(self, input):
out = self.conv(input)
out += input
return out
class Encoder(nn.Module):
def __init__(self, in_channel, channel, n_res_block, n_res_channel, stride):
super().__init__()
if stride == 4:
blocks = [
nn.Conv2d(in_channel, channel // 2, 4, stride=2, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(channel // 2, channel, 4, stride=2, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(channel, channel, 3, padding=1),
]
elif stride == 2:
blocks = [
nn.Conv2d(in_channel, channel // 2, 4, stride=2, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(channel // 2, channel, 3, padding=1),
]
for i in range(n_res_block):
blocks.append(ResBlock(channel, n_res_channel))
blocks.append(nn.ReLU(inplace=True))
self.blocks = nn.Sequential(*blocks)
def forward(self, input):
return self.blocks(input)
class Decoder(nn.Module):
def __init__(
self, in_channel, out_channel, channel, n_res_block, n_res_channel, stride
):
super().__init__()
blocks = [nn.Conv2d(in_channel, channel, 3, padding=1)]
for i in range(n_res_block):
blocks.append(ResBlock(channel, n_res_channel))
blocks.append(nn.ReLU(inplace=True))
if stride == 4:
blocks.extend(
[
nn.ConvTranspose2d(channel, channel // 2, 4, stride=2, padding=1),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(
channel // 2, out_channel, 4, stride=2, padding=1
),
]
)
elif stride == 2:
blocks.append(
nn.ConvTranspose2d(channel, out_channel, 4, stride=2, padding=1)
)
self.blocks = nn.Sequential(*blocks)
def forward(self, input):
return self.blocks(input)
class VQVAE(nn.Module):
def __init__(
self,
in_channel=3,
channel=128,
n_res_block=2,
n_res_channel=32,
codebook_dim=64,
codebook_size=512,
decay=0.99,
):
super().__init__()
self.enc_b = Encoder(in_channel, channel, n_res_block, n_res_channel, stride=4)
self.enc_t = Encoder(channel, channel, n_res_block, n_res_channel, stride=2)
self.quantize_conv_t = nn.Conv2d(channel, codebook_dim, 1)
self.quantize_t = Quantize(codebook_dim, codebook_size)
self.dec_t = Decoder(
codebook_dim, codebook_dim, channel, n_res_block, n_res_channel, stride=2
)
self.quantize_conv_b = nn.Conv2d(codebook_dim + channel, codebook_dim, 1)
self.quantize_b = Quantize(codebook_dim, codebook_size)
self.upsample_t = nn.ConvTranspose2d(
codebook_dim, codebook_dim, 4, stride=2, padding=1
)
self.dec = Decoder(
codebook_dim + codebook_dim,
in_channel,
channel,
n_res_block,
n_res_channel,
stride=4,
)
def forward(self, input):
quant_t, quant_b, diff, _, _ = self.encode(input)
dec = self.decode(quant_t, quant_b)
return dec, diff
def encode(self, input):
enc_b = checkpoint(self.enc_b, input)
enc_t = checkpoint(self.enc_t, enc_b)
quant_t = self.quantize_conv_t(enc_t).permute(0, 2, 3, 1)
quant_t, diff_t, id_t = self.quantize_t(quant_t)
quant_t = quant_t.permute(0, 3, 1, 2)
diff_t = diff_t.unsqueeze(0)
dec_t = checkpoint(self.dec_t, quant_t)
enc_b = torch.cat([dec_t, enc_b], 1)
quant_b = checkpoint(self.quantize_conv_b, enc_b).permute(0, 2, 3, 1)
quant_b, diff_b, id_b = self.quantize_b(quant_b)
quant_b = quant_b.permute(0, 3, 1, 2)
diff_b = diff_b.unsqueeze(0)
return quant_t, quant_b, diff_t + diff_b, id_t, id_b
def decode(self, quant_t, quant_b):
upsample_t = self.upsample_t(quant_t)
quant = torch.cat([upsample_t, quant_b], 1)
dec = checkpoint(self.dec, quant)
return dec
def decode_code(self, code_t, code_b):
quant_t = self.quantize_t.embed_code(code_t)
quant_t = quant_t.permute(0, 3, 1, 2)
quant_b = self.quantize_b.embed_code(code_b)
quant_b = quant_b.permute(0, 3, 1, 2)
dec = self.decode(quant_t, quant_b)
return dec
@register_model
def register_vqvae(opt_net, opt):
kw = opt_get(opt_net, ['kwargs'], {})
return VQVAE(**kw)

View File

@ -295,7 +295,7 @@ class Trainer:
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_imagenet_resnet50.yml')
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_imgset_vqvae_stage1.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()

325
codes/train2.py Normal file
View File

@ -0,0 +1,325 @@
import os
import math
import argparse
import random
import logging
from tqdm import tqdm
import torch
from data.data_sampler import DistIterSampler
from trainer.eval.evaluator import create_evaluator
from utils import util, options as option
from data import create_dataloader, create_dataset
from trainer.ExtensibleTrainer import ExtensibleTrainer
from time import time
def init_dist(backend, **kwargs):
# These packages have globals that screw with Windows, so only import them if needed.
import torch.distributed as dist
import torch.multiprocessing as mp
"""initialization for distributed training"""
if mp.get_start_method(allow_none=True) != 'spawn':
mp.set_start_method('spawn')
rank = int(os.environ['RANK'])
num_gpus = torch.cuda.device_count()
torch.cuda.set_device(rank % num_gpus)
dist.init_process_group(backend=backend, **kwargs)
class Trainer:
def init(self, opt, launcher, all_networks={}):
self._profile = False
self.val_compute_psnr = opt['eval']['compute_psnr'] if 'compute_psnr' in opt['eval'].keys() else True
self.val_compute_fea = opt['eval']['compute_fea'] if 'compute_fea' in opt['eval'].keys() else True
#### loading resume state if exists
if opt['path'].get('resume_state', None):
# distributed resuming: all load into default GPU
device_id = torch.cuda.current_device()
resume_state = torch.load(opt['path']['resume_state'],
map_location=lambda storage, loc: storage.cuda(device_id))
option.check_resume(opt, resume_state['iter']) # check resume options
else:
resume_state = None
#### mkdir and loggers
if self.rank <= 0: # normal training (self.rank -1) OR distributed training (self.rank 0)
if resume_state is None:
util.mkdir_and_rename(
opt['path']['experiments_root']) # rename experiment folder if exists
util.mkdirs(
(path for key, path in opt['path'].items() if not key == 'experiments_root' and path is not None
and 'pretrain_model' not in key and 'resume' not in key))
# config loggers. Before it, the log will not work
util.setup_logger('base', opt['path']['log'], 'train_' + opt['name'], level=logging.INFO,
screen=True, tofile=True)
self.logger = logging.getLogger('base')
self.logger.info(option.dict2str(opt))
# tensorboard logger
if opt['use_tb_logger'] and 'debug' not in opt['name']:
self.tb_logger_path = os.path.join(opt['path']['experiments_root'], 'tb_logger')
version = float(torch.__version__[0:3])
if version >= 1.1: # PyTorch 1.1
from torch.utils.tensorboard import SummaryWriter
else:
self.self.logger.info(
'You are using PyTorch {}. Tensorboard will use [tensorboardX]'.format(version))
from tensorboardX import SummaryWriter
self.tb_logger = SummaryWriter(log_dir=self.tb_logger_path)
else:
util.setup_logger('base', opt['path']['log'], 'train', level=logging.INFO, screen=True)
self.logger = logging.getLogger('base')
# convert to NoneDict, which returns None for missing keys
opt = option.dict_to_nonedict(opt)
self.opt = opt
#### wandb init
if opt['wandb']:
import wandb
os.makedirs(os.path.join(opt['path']['log'], 'wandb'), exist_ok=True)
wandb.init(project=opt['name'], dir=opt['path']['log'])
#### random seed
seed = opt['train']['manual_seed']
if seed is None:
seed = random.randint(1, 10000)
if self.rank <= 0:
self.logger.info('Random seed: {}'.format(seed))
seed += self.rank # Different multiprocessing instances should behave differently.
util.set_random_seed(seed)
torch.backends.cudnn.benchmark = True
# torch.backends.cudnn.deterministic = True
# torch.autograd.set_detect_anomaly(True)
# Save the compiled opt dict to the global loaded_options variable.
util.loaded_options = opt
#### create train and val dataloader
dataset_ratio = 1 # enlarge the size of each epoch
for phase, dataset_opt in opt['datasets'].items():
if phase == 'train':
self.train_set = create_dataset(dataset_opt)
train_size = int(math.ceil(len(self.train_set) / dataset_opt['batch_size']))
total_iters = int(opt['train']['niter'])
self.total_epochs = int(math.ceil(total_iters / train_size))
if opt['dist']:
self.train_sampler = DistIterSampler(self.train_set, self.world_size, self.rank, dataset_ratio)
self.total_epochs = int(math.ceil(total_iters / (train_size * dataset_ratio)))
else:
self.train_sampler = None
self.train_loader = create_dataloader(self.train_set, dataset_opt, opt, self.train_sampler)
if self.rank <= 0:
self.logger.info('Number of train images: {:,d}, iters: {:,d}'.format(
len(self.train_set), train_size))
self.logger.info('Total epochs needed: {:d} for iters {:,d}'.format(
self.total_epochs, total_iters))
elif phase == 'val':
self.val_set = create_dataset(dataset_opt)
self.val_loader = create_dataloader(self.val_set, dataset_opt, opt, None)
if self.rank <= 0:
self.logger.info('Number of val images in [{:s}]: {:d}'.format(
dataset_opt['name'], len(self.val_set)))
else:
raise NotImplementedError('Phase [{:s}] is not recognized.'.format(phase))
assert self.train_loader is not None
#### create model
self.model = ExtensibleTrainer(opt, cached_networks=all_networks)
### Evaluators
self.evaluators = []
if 'evaluators' in opt['eval'].keys():
for ev_key, ev_opt in opt['eval']['evaluators'].items():
self.evaluators.append(create_evaluator(self.model.networks[ev_opt['for']],
ev_opt, self.model.env))
#### resume training
if resume_state:
self.logger.info('Resuming training from epoch: {}, iter: {}.'.format(
resume_state['epoch'], resume_state['iter']))
self.start_epoch = resume_state['epoch']
self.current_step = resume_state['iter']
self.model.resume_training(resume_state, 'amp_opt_level' in opt.keys()) # handle optimizers and schedulers
else:
self.current_step = -1 if 'start_step' not in opt.keys() else opt['start_step']
self.start_epoch = 0
if 'force_start_step' in opt.keys():
self.current_step = opt['force_start_step']
opt['current_step'] = self.current_step
def do_step(self, train_data):
if self._profile:
print("Data fetch: %f" % (time() - _t))
_t = time()
opt = self.opt
self.current_step += 1
#### update learning rate
self.model.update_learning_rate(self.current_step, warmup_iter=opt['train']['warmup_iter'])
#### training
if self._profile:
print("Update LR: %f" % (time() - _t))
_t = time()
self.model.feed_data(train_data, self.current_step)
self.model.optimize_parameters(self.current_step)
if self._profile:
print("Model feed + step: %f" % (time() - _t))
_t = time()
#### log
if self.current_step % opt['logger']['print_freq'] == 0 and self.rank <= 0:
logs = self.model.get_current_log(self.current_step)
message = '[epoch:{:3d}, iter:{:8,d}, lr:('.format(self.epoch, self.current_step)
for v in self.model.get_current_learning_rate():
message += '{:.3e},'.format(v)
message += ')] '
for k, v in logs.items():
if 'histogram' in k:
self.tb_logger.add_histogram(k, v, self.current_step)
elif isinstance(v, dict):
self.tb_logger.add_scalars(k, v, self.current_step)
else:
message += '{:s}: {:.4e} '.format(k, v)
# tensorboard logger
if opt['use_tb_logger'] and 'debug' not in opt['name']:
self.tb_logger.add_scalar(k, v, self.current_step)
if opt['wandb']:
import wandb
wandb.log(logs)
self.logger.info(message)
#### save models and training states
if self.current_step % opt['logger']['save_checkpoint_freq'] == 0:
if self.rank <= 0:
self.logger.info('Saving models and training states.')
self.model.save(self.current_step)
self.model.save_training_state(self.epoch, self.current_step)
if 'alt_path' in opt['path'].keys():
import shutil
print("Synchronizing tb_logger to alt_path..")
alt_tblogger = os.path.join(opt['path']['alt_path'], "tb_logger")
shutil.rmtree(alt_tblogger, ignore_errors=True)
shutil.copytree(self.tb_logger_path, alt_tblogger)
#### validation
if opt['datasets'].get('val', None) and self.current_step % opt['train']['val_freq'] == 0:
if opt['model'] in ['sr', 'srgan', 'corruptgan', 'spsrgan',
'extensibletrainer'] and self.rank <= 0: # image restoration validation
avg_psnr = 0.
avg_fea_loss = 0.
idx = 0
val_tqdm = tqdm(self.val_loader)
for val_data in val_tqdm:
idx += 1
for b in range(len(val_data['HQ_path'])):
img_name = os.path.splitext(os.path.basename(val_data['HQ_path'][b]))[0]
img_dir = os.path.join(opt['path']['val_images'], img_name)
util.mkdir(img_dir)
self.model.feed_data(val_data, self.current_step)
self.model.test()
visuals = self.model.get_current_visuals()
if visuals is None:
continue
sr_img = util.tensor2img(visuals['rlt'][b]) # uint8
# calculate PSNR
if self.val_compute_psnr:
gt_img = util.tensor2img(visuals['hq'][b]) # uint8
sr_img, gt_img = util.crop_border([sr_img, gt_img], opt['scale'])
avg_psnr += util.calculate_psnr(sr_img, gt_img)
# calculate fea loss
if self.val_compute_fea:
avg_fea_loss += self.model.compute_fea_loss(visuals['rlt'][b], visuals['hq'][b])
# Save SR images for reference
img_base_name = '{:s}_{:d}.png'.format(img_name, self.current_step)
save_img_path = os.path.join(img_dir, img_base_name)
util.save_img(sr_img, save_img_path)
avg_psnr = avg_psnr / idx
avg_fea_loss = avg_fea_loss / idx
# log
self.logger.info('# Validation # PSNR: {:.4e} Fea: {:.4e}'.format(avg_psnr, avg_fea_loss))
# tensorboard logger
if opt['use_tb_logger'] and 'debug' not in opt['name'] and self.rank <= 0:
self.tb_logger.add_scalar('val_psnr', avg_psnr, self.current_step)
self.tb_logger.add_scalar('val_fea', avg_fea_loss, self.current_step)
if len(self.evaluators) != 0 and self.current_step % opt['train']['val_freq'] == 0 and self.rank <= 0:
eval_dict = {}
for eval in self.evaluators:
eval_dict.update(eval.perform_eval())
if self.rank <= 0:
print("Evaluator results: ", eval_dict)
for ek, ev in eval_dict.items():
self.tb_logger.add_scalar(ek, ev, self.current_step)
def do_training(self):
self.logger.info('Start training from epoch: {:d}, iter: {:d}'.format(self.start_epoch, self.current_step))
for epoch in range(self.start_epoch, self.total_epochs + 1):
self.epoch = epoch
if opt['dist']:
self.train_sampler.set_epoch(epoch)
tq_ldr = tqdm(self.train_loader)
_t = time()
for train_data in tq_ldr:
self.do_step(train_data)
def create_training_generator(self, index):
self.logger.info('Start training from epoch: {:d}, iter: {:d}'.format(self.start_epoch, self.current_step))
for epoch in range(self.start_epoch, self.total_epochs + 1):
self.epoch = epoch
if self.opt['dist']:
self.train_sampler.set_epoch(epoch)
tq_ldr = tqdm(self.train_loader, position=index)
_t = time()
for train_data in tq_ldr:
yield self.model
self.do_step(train_data)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_imgset_pixpro_3.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args()
opt = option.parse(args.opt, is_train=True)
if args.launcher != 'none':
# export CUDA_VISIBLE_DEVICES for running in distributed mode.
if 'gpu_ids' in opt.keys():
gpu_list = ','.join(str(x) for x in opt['gpu_ids'])
os.environ['CUDA_VISIBLE_DEVICES'] = gpu_list
print('export CUDA_VISIBLE_DEVICES=' + gpu_list)
trainer = Trainer()
#### distributed training settings
if args.launcher == 'none': # disabled distributed training
opt['dist'] = False
trainer.rank = -1
if len(opt['gpu_ids']) == 1:
torch.cuda.set_device(opt['gpu_ids'][0])
print('Disabled distributed training.')
else:
opt['dist'] = True
init_dist('nccl')
trainer.world_size = torch.distributed.get_world_size()
trainer.rank = torch.distributed.get_rank()
trainer.init(opt, args.launcher)
trainer.do_training()

View File

@ -124,7 +124,7 @@ class CosineAnnealingLR_Restart(_LRScheduler):
if __name__ == "__main__":
optimizer = torch.optim.Adam([torch.zeros(3, 64, 3, 3)], lr=.2, weight_decay=0,
optimizer = torch.optim.Adam([torch.zeros(3, 64, 3, 3)], lr=1e-4, weight_decay=0,
betas=(0.9, 0.99))
##############################
# MultiStepLR_Restart
@ -159,17 +159,17 @@ if __name__ == "__main__":
restart_weights = [1]
## four
T_period = [25000, 25000]
restarts = [252000]
restart_weights = [.5]
T_period = [200000, 100000, 200000]
restarts = [200000, 300000]
restart_weights = [.5, .25]
scheduler = CosineAnnealingLR_Restart(optimizer, T_period, warmup=227000, eta_min=.01, restarts=restarts,
scheduler = CosineAnnealingLR_Restart(optimizer, T_period, warmup=10000, eta_min=1e-8, restarts=restarts,
weights=restart_weights)
##############################
# Draw figure
##############################
N_iter = 1000000
N_iter = 500000
lr_l = list(range(N_iter))
for i in range(N_iter):
scheduler.step()