Discriminator part 1

New discriminator. Includes spectral norming.
This commit is contained in:
James Betker 2020-04-28 23:00:29 -06:00
parent 2c145c39b6
commit 5b8a77f02c
4 changed files with 221 additions and 13 deletions

View File

@ -0,0 +1,85 @@
import torch
import torch.nn as nn
import torchvision
import models.archs.arch_util as arch_util
import functools
import torch.nn.functional as F
import torch.nn.utils.spectral_norm as SpectralNorm
# Class that halfs the image size (x4 complexity reduction) and doubles the filter size. Substantial resnet
# processing is also performed.
class ResnetDownsampleLayer(nn.Module):
def __init__(self, starting_channels: int, number_filters: int, filter_multiplier: int, residual_blocks_input: int, residual_blocks_skip_image: int, total_residual_blocks: int):
super(ResnetDownsampleLayer, self).__init__()
self.skip_image_reducer = SpectralNorm(nn.Conv2d(starting_channels, number_filters, 3, stride=1, padding=1, bias=True))
self.skip_image_res_trunk = arch_util.make_layer(functools.partial(arch_util.ResidualBlockSpectralNorm, nf=number_filters, total_residual_blocks=total_residual_blocks), residual_blocks_skip_image)
self.input_reducer = SpectralNorm(nn.Conv2d(number_filters, number_filters*filter_multiplier, 3, stride=2, padding=1, bias=True))
self.res_trunk = arch_util.make_layer(functools.partial(arch_util.ResidualBlockSpectralNorm, nf=number_filters*filter_multiplier, total_residual_blocks=total_residual_blocks), residual_blocks_input)
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
arch_util.initialize_weights([self.input_reducer, self.skip_image_reducer], 1)
def forward(self, x, skip_image):
# Process the skip image first.
skip = self.lrelu(self.skip_image_reducer(skip_image))
skip = self.skip_image_res_trunk(skip)
# Concat the processed skip image onto the input and perform processing.
out = (x + skip) / 2
out = self.lrelu(self.input_reducer(out))
out = self.res_trunk(out)
return out
class DiscriminatorResnet(nn.Module):
# Discriminator that downsamples 5 times with resnet blocks at each layer. On each downsample, the filter size is
# increased by a factor of 2. Feeds the output of the convs into a dense for prediction at the logits. Scales the
# final dense based on the input image size. Intended for use with input images which are multiples of 32.
#
# This discriminator also includes provisions to pass an image at various downsample steps in directly. When this
# is done with a generator, it will allow much shorter gradient paths between the generator and discriminator. When
# no downsampled images are passed into the forward() pass, they will be automatically generated from the source
# image using interpolation.
#
# Uses spectral normalization rather than batch normalization.
def __init__(self, in_nc: int, nf: int, input_img_size: int, trunk_resblocks: int, skip_resblocks: int):
super(DiscriminatorResnet, self).__init__()
self.dimensionalize = nn.Conv2d(in_nc, nf, kernel_size=3, stride=1, padding=1, bias=True)
# Trunk resblocks are the important things to get right, so use those. 5=number of downsample layers.
total_resblocks = trunk_resblocks * 5
self.downsample1 = ResnetDownsampleLayer(in_nc, nf, 2, trunk_resblocks, skip_resblocks, total_resblocks)
self.downsample2 = ResnetDownsampleLayer(in_nc, nf*2, 2, trunk_resblocks, skip_resblocks, total_resblocks)
self.downsample3 = ResnetDownsampleLayer(in_nc, nf*4, 2, trunk_resblocks, skip_resblocks, total_resblocks)
# At the bottom layers, we cap the filter multiplier. We want this particular network to focus as much on the
# macro-details at higher image dimensionality as it does to the feature details.
self.downsample4 = ResnetDownsampleLayer(in_nc, nf*8, 1, trunk_resblocks, skip_resblocks, total_resblocks)
self.downsample5 = ResnetDownsampleLayer(in_nc, nf*8, 1, trunk_resblocks, skip_resblocks, total_resblocks)
self.downsamplers = [self.downsample1, self.downsample2, self.downsample3, self.downsample4, self.downsample5]
downsampled_image_size = input_img_size / 32
self.linear1 = nn.Linear(int(nf * 8 * downsampled_image_size * downsampled_image_size), 100)
self.linear2 = nn.Linear(100, 1)
# activation function
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
arch_util.initialize_weights([self.dimensionalize, self.linear1, self.linear2], 1)
def forward(self, x, skip_images=None):
if skip_images is None:
# Sythesize them from x.
skip_images = []
for i in range(len(self.downsamplers)):
m = 2 ** i
skip_images.append(F.interpolate(x, scale_factor=1 / m, mode='bilinear', align_corners=False))
fea = self.dimensionalize(x)
for skip, d in zip(skip_images, self.downsamplers):
fea = d(fea, skip)
fea = fea.view(fea.size(0), -1)
fea = self.lrelu(self.linear1(fea))
out = self.linear2(fea)
return out

View File

@ -2,7 +2,16 @@ import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.init as init import torch.nn.init as init
import torch.nn.functional as F import torch.nn.functional as F
import torch.nn.utils.spectral_norm as SpectralNorm
from math import sqrt
def scale_conv_weights_fixup(conv, residual_block_count, m=2):
k = conv.kernel_size[0]
n = conv.out_channels
scaling_factor = residual_block_count ** (-1.0 / (2 * m - 2))
sigma = sqrt(2 / (k * k * n)) * scaling_factor
conv.weight.data = conv.weight.data * sigma
return conv
def initialize_weights(net_l, scale=1): def initialize_weights(net_l, scale=1):
if not isinstance(net_l, list): if not isinstance(net_l, list):
@ -30,6 +39,89 @@ def make_layer(block, n_layers):
layers.append(block()) layers.append(block())
return nn.Sequential(*layers) return nn.Sequential(*layers)
def conv3x3(in_planes, out_planes, stride=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=1, bias=False)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class FixupBasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(FixupBasicBlock, self).__init__()
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.bias1a = nn.Parameter(torch.zeros(1))
self.conv1 = conv3x3(inplanes, planes, stride)
self.bias1b = nn.Parameter(torch.zeros(1))
self.relu = nn.ReLU(inplace=True)
self.bias2a = nn.Parameter(torch.zeros(1))
self.conv2 = conv3x3(planes, planes)
self.scale = nn.Parameter(torch.ones(1))
self.bias2b = nn.Parameter(torch.zeros(1))
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x + self.bias1a)
out = self.relu(out + self.bias1b)
out = self.conv2(out + self.bias2a)
out = out * self.scale + self.bias2b
if self.downsample is not None:
identity = self.downsample(x + self.bias1a)
out += identity
out = self.relu(out)
return out
class FixupBottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(FixupBottleneck, self).__init__()
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.bias1a = nn.Parameter(torch.zeros(1))
self.conv1 = conv1x1(inplanes, planes)
self.bias1b = nn.Parameter(torch.zeros(1))
self.bias2a = nn.Parameter(torch.zeros(1))
self.conv2 = conv3x3(planes, planes, stride)
self.bias2b = nn.Parameter(torch.zeros(1))
self.bias3a = nn.Parameter(torch.zeros(1))
self.conv3 = conv1x1(planes, planes * self.expansion)
self.scale = nn.Parameter(torch.ones(1))
self.bias3b = nn.Parameter(torch.zeros(1))
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x + self.bias1a)
out = self.relu(out + self.bias1b)
out = self.conv2(out + self.bias2a)
out = self.relu(out + self.bias2b)
out = self.conv3(out + self.bias3a)
out = out * self.scale + self.bias3b
if self.downsample is not None:
identity = self.downsample(x + self.bias1a)
out += identity
out = self.relu(out)
return out
class ResidualBlock(nn.Module): class ResidualBlock(nn.Module):
'''Residual block with BN '''Residual block with BN
---Conv-BN-ReLU-Conv-+- ---Conv-BN-ReLU-Conv-+-
@ -38,6 +130,7 @@ class ResidualBlock(nn.Module):
def __init__(self, nf=64): def __init__(self, nf=64):
super(ResidualBlock, self).__init__() super(ResidualBlock, self).__init__()
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.BN1 = nn.BatchNorm2d(nf) self.BN1 = nn.BatchNorm2d(nf)
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
@ -48,10 +141,33 @@ class ResidualBlock(nn.Module):
def forward(self, x): def forward(self, x):
identity = x identity = x
out = F.relu(self.BN1(self.conv1(x)), inplace=True) out = self.lrelu(self.BN1(self.conv1(x)))
out = self.BN2(self.conv2(out)) out = self.BN2(self.conv2(out))
return identity + out return identity + out
class ResidualBlockSpectralNorm(nn.Module):
'''Residual block with Spectral Normalization.
---SpecConv-ReLU-SpecConv-+-
|________________|
'''
def __init__(self, nf, total_residual_blocks):
super(ResidualBlockSpectralNorm, self).__init__()
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.conv1 = SpectralNorm(nn.Conv2d(nf, nf, 3, 1, 1, bias=True))
self.conv2 = SpectralNorm(nn.Conv2d(nf, nf, 3, 1, 1, bias=True))
# Initialize first.
initialize_weights([self.conv1, self.conv2], 1)
# Then perform fixup scaling
self.conv1 = scale_conv_weights_fixup(self.conv1, total_residual_blocks)
self.conv2 = scale_conv_weights_fixup(self.conv2, total_residual_blocks)
def forward(self, x):
identity = x
out = self.lrelu(self.conv1(x))
out = self.conv2(out)
return identity + out
class ResidualBlock_noBN(nn.Module): class ResidualBlock_noBN(nn.Module):
'''Residual block w/o BN '''Residual block w/o BN
@ -61,6 +177,7 @@ class ResidualBlock_noBN(nn.Module):
def __init__(self, nf=64): def __init__(self, nf=64):
super(ResidualBlock_noBN, self).__init__() super(ResidualBlock_noBN, self).__init__()
self.lrelu = nn.LeakyReLU(negative_slope=0.1, inplace=True)
self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True) self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
@ -69,7 +186,7 @@ class ResidualBlock_noBN(nn.Module):
def forward(self, x): def forward(self, x):
identity = x identity = x
out = F.relu(self.conv1(x), inplace=True) out = self.lrelu(self.conv1(x))
out = self.conv2(out) out = self.conv2(out)
return identity + out return identity + out

View File

@ -1,6 +1,7 @@
import torch import torch
import models.archs.SRResNet_arch as SRResNet_arch import models.archs.SRResNet_arch as SRResNet_arch
import models.archs.discriminator_vgg_arch as SRGAN_arch import models.archs.discriminator_vgg_arch as SRGAN_arch
import models.archs.DiscriminatorResnet_arch as DiscriminatorResnet_arch
import models.archs.RRDBNet_arch as RRDBNet_arch import models.archs.RRDBNet_arch as RRDBNet_arch
import models.archs.EDVR_arch as EDVR_arch import models.archs.EDVR_arch as EDVR_arch
import models.archs.HighToLowResNet as HighToLowResNet import models.archs.HighToLowResNet as HighToLowResNet
@ -52,6 +53,9 @@ def define_D(opt):
if which_model == 'discriminator_vgg_128': if which_model == 'discriminator_vgg_128':
netD = SRGAN_arch.Discriminator_VGG_128(in_nc=opt_net['in_nc'], nf=opt_net['nf'], input_img_factor=img_sz / 128) netD = SRGAN_arch.Discriminator_VGG_128(in_nc=opt_net['in_nc'], nf=opt_net['nf'], input_img_factor=img_sz / 128)
elif which_model == 'discriminator_resnet':
netD = DiscriminatorResnet_arch.DiscriminatorResnet(in_nc=opt_net['in_nc'], nf=opt_net['nf'], input_img_size=img_sz,
trunk_resblocks=opt_net['trunk_resblocks'], skip_resblocks=opt_net['skip_resblocks'])
else: else:
raise NotImplementedError('Discriminator model [{:s}] not recognized'.format(which_model)) raise NotImplementedError('Discriminator model [{:s}] not recognized'.format(which_model))
return netD return netD

View File

@ -16,7 +16,7 @@ datasets:
dataroot_LQ: E:\\4k6k\\datasets\\ultra_lowq\\for_training dataroot_LQ: E:\\4k6k\\datasets\\ultra_lowq\\for_training
mismatched_Data_OK: true mismatched_Data_OK: true
use_shuffle: true use_shuffle: true
n_workers: 4 # per GPU n_workers: 8 # per GPU
batch_size: 32 batch_size: 32
target_size: 64 target_size: 64
use_flip: false use_flip: false
@ -35,19 +35,21 @@ network_G:
in_nc: 3 in_nc: 3
out_nc: 3 out_nc: 3
nf: 32 nf: 32
ra_blocks: 5 ra_blocks: 3
assembler_blocks: 3 assembler_blocks: 2
network_D: network_D:
which_model_D: discriminator_vgg_128 which_model_D: discriminator_resnet
in_nc: 3 in_nc: 3
nf: 64 nf: 32
trunk_resblocks: 3
skip_resblocks: 2
#### path #### path
path: path:
pretrain_model_G: ../experiments/corrupt_flatnet_G.pth pretrain_model_G: ~
pretrain_model_D: ../experiments/corrupt_flatnet_D.pth pretrain_model_D: ~
resume_state: ../experiments/corruptGAN_4k_lqprn_closeup_flat_net/training_state/3000.state resume_state: ~
strict_load: true strict_load: true
#### training settings: learning rate scheme, loss #### training settings: learning rate scheme, loss
@ -56,7 +58,7 @@ train:
weight_decay_G: 0 weight_decay_G: 0
beta1_G: 0.9 beta1_G: 0.9
beta2_G: 0.99 beta2_G: 0.99
lr_D: !!float 4e-5 lr_D: !!float 1e-5
weight_decay_D: 0 weight_decay_D: 0
beta1_D: 0.9 beta1_D: 0.9
beta2_D: 0.99 beta2_D: 0.99
@ -71,11 +73,11 @@ train:
pixel_weight: !!float 1e-2 pixel_weight: !!float 1e-2
feature_criterion: l1 feature_criterion: l1
feature_weight: 0 feature_weight: 0
gan_type: ragan # gan | ragan gan_type: gan # gan | ragan
gan_weight: !!float 1e-1 gan_weight: !!float 1e-1
D_update_ratio: 1 D_update_ratio: 1
D_init_iters: 0 D_init_iters: 1500
manual_seed: 10 manual_seed: 10
val_freq: !!float 5e2 val_freq: !!float 5e2