Adjustments to latent_space_playground

This commit is contained in:
James Betker 2020-11-25 15:52:36 -07:00
parent 205c9a5335
commit 5edaf085e0

View File

@ -152,8 +152,8 @@ if __name__ == "__main__":
resample_imgs = [] resample_imgs = []
img_files = glob(imgs_to_resample_pattern) img_files = glob(imgs_to_resample_pattern)
for i, img_file in enumerate(img_files): for i, img_file in enumerate(img_files):
#if i > 5: if i > 5:
# break break
t = image_2_tensor(img_file, desired_size).to(model.env['device']) t = image_2_tensor(img_file, desired_size).to(model.env['device'])
if resample_factor != 1: if resample_factor != 1:
t = F.interpolate(t, scale_factor=resample_factor, mode="bicubic") t = F.interpolate(t, scale_factor=resample_factor, mode="bicubic")
@ -175,7 +175,7 @@ if __name__ == "__main__":
dt_transfers = [image_2_tensor(i, desired_size) for i in dt_imgs] dt_transfers = [image_2_tensor(i, desired_size) for i in dt_imgs]
# Downsample the images because they are often just too big to feed through the network (probably needs to be parameterized) # Downsample the images because they are often just too big to feed through the network (probably needs to be parameterized)
for j in range(len(dt_transfers)): for j in range(len(dt_transfers)):
if max(dt_transfers[j].shape[2], dt_transfers[j].shape[3]) > 2000: if min(dt_transfers[j].shape[2], dt_transfers[j].shape[3]) > 1600:
dt_transfers[j] = F.interpolate(dt_transfers[j], scale_factor=1/2, mode='area') dt_transfers[j] = F.interpolate(dt_transfers[j], scale_factor=1/2, mode='area')
corruptor = ImageCorruptor({'fixed_corruptions':['jpeg-low', 'gaussian_blur_5']}) corruptor = ImageCorruptor({'fixed_corruptions':['jpeg-low', 'gaussian_blur_5']})