diff --git a/codes/models/audio/music/transformer_diffusion8.py b/codes/models/audio/music/transformer_diffusion8.py index acc0adfe..812f5946 100644 --- a/codes/models/audio/music/transformer_diffusion8.py +++ b/codes/models/audio/music/transformer_diffusion8.py @@ -46,17 +46,12 @@ class DietAttentionBlock(TimestepBlock): self.rms_scale_norm = RMSScaleShiftNorm(in_dim) self.proj = nn.Linear(in_dim, dim) self.attn = Attention(dim, heads=heads, causal=False, dropout=dropout) - self.res = ResBlock(channels=dim, dropout=dropout, out_channels=dim, dims=1) - self.ff = nn.Sequential(nn.LayerNorm(dim), - nn.GELU(), - FeedForward(dim, in_dim, mult=1, dropout=dropout, zero_init_output=True)) + self.ff = FeedForward(dim, in_dim, mult=1, dropout=dropout, zero_init_output=True) def forward(self, x, timestep_emb, rotary_emb): h = self.rms_scale_norm(x, norm_scale_shift_inp=timestep_emb) h = self.proj(h) - k, _, _, _ = checkpoint(self.attn, h, None, None, None, None, None, rotary_emb) - h = k + h - h = checkpoint(self.res, h.permute(0,2,1)).permute(0,2,1) + h, _, _, _ = checkpoint(self.attn, h, None, None, None, None, None, rotary_emb) h = checkpoint(self.ff, h) return h + x @@ -232,7 +227,6 @@ class TransformerDiffusionWithQuantizer(nn.Module): def get_grad_norm_parameter_groups(self): groups = { 'attention_layers': list(itertools.chain.from_iterable([lyr.attn.parameters() for lyr in self.diff.layers])), - 'res_layers': list(itertools.chain.from_iterable([lyr.res.parameters() for lyr in self.diff.layers])), 'ff_layers': list(itertools.chain.from_iterable([lyr.ff.parameters() for lyr in self.diff.layers])), 'quantizer_encoder': list(self.quantizer.encoder.parameters()), 'quant_codebook': [self.quantizer.quantizer.codevectors],