RRDB with bypass

This commit is contained in:
James Betker 2020-10-29 09:39:45 -06:00
parent 1655b9e242
commit 607ff3c67c
4 changed files with 61 additions and 7 deletions

View File

@ -1,9 +1,12 @@
import os
import torch import torch
import torch.nn as nn import torch.nn as nn
import torch.nn.functional as F import torch.nn.functional as F
import torchvision
from torch.utils.checkpoint import checkpoint_sequential from torch.utils.checkpoint import checkpoint_sequential
from models.archs.arch_util import make_layer, default_init_weights from models.archs.arch_util import make_layer, default_init_weights, ConvGnSilu
class ResidualDenseBlock(nn.Module): class ResidualDenseBlock(nn.Module):
@ -79,6 +82,44 @@ class RRDB(nn.Module):
return out * 0.2 + x return out * 0.2 + x
class RRDBWithBypass(nn.Module):
"""Residual in Residual Dense Block.
Used in RRDB-Net in ESRGAN.
Args:
mid_channels (int): Channel number of intermediate features.
growth_channels (int): Channels for each growth.
"""
def __init__(self, mid_channels, growth_channels=32):
super(RRDBWithBypass, self).__init__()
self.rdb1 = ResidualDenseBlock(mid_channels, growth_channels)
self.rdb2 = ResidualDenseBlock(mid_channels, growth_channels)
self.rdb3 = ResidualDenseBlock(mid_channels, growth_channels)
self.bypass = nn.Sequential(ConvGnSilu(mid_channels*2, mid_channels, kernel_size=3, bias=True, activation=True, norm=True),
ConvGnSilu(mid_channels, mid_channels//2, kernel_size=3, bias=False, activation=True, norm=False),
ConvGnSilu(mid_channels//2, 1, kernel_size=3, bias=False, activation=False, norm=False),
nn.Sigmoid())
def forward(self, x):
"""Forward function.
Args:
x (Tensor): Input tensor with shape (n, c, h, w).
Returns:
Tensor: Forward results.
"""
out = self.rdb1(x)
out = self.rdb2(out)
out = self.rdb3(out)
bypass = self.bypass(torch.cat([x, out], dim=1))
self.bypass_map = bypass.detach().clone()
# Emperically, we use 0.2 to scale the residual for better performance
return out * 0.2 * bypass + x
class RRDBNet(nn.Module): class RRDBNet(nn.Module):
"""Networks consisting of Residual in Residual Dense Block, which is used """Networks consisting of Residual in Residual Dense Block, which is used
in ESRGAN. in ESRGAN.
@ -100,11 +141,15 @@ class RRDBNet(nn.Module):
out_channels, out_channels,
mid_channels=64, mid_channels=64,
num_blocks=23, num_blocks=23,
growth_channels=32): growth_channels=32,
body_block=RRDB,
blocks_per_checkpoint=4):
super(RRDBNet, self).__init__() super(RRDBNet, self).__init__()
self.num_blocks = num_blocks
self.blocks_per_checkpoint = blocks_per_checkpoint
self.conv_first = nn.Conv2d(in_channels, mid_channels, 3, 1, 1) self.conv_first = nn.Conv2d(in_channels, mid_channels, 3, 1, 1)
self.body = make_layer( self.body = make_layer(
RRDB, body_block,
num_blocks, num_blocks,
mid_channels=mid_channels, mid_channels=mid_channels,
growth_channels=growth_channels) growth_channels=growth_channels)
@ -134,7 +179,7 @@ class RRDBNet(nn.Module):
""" """
feat = self.conv_first(x) feat = self.conv_first(x)
body_feat = self.conv_body(checkpoint_sequential(self.body, 5, feat)) body_feat = self.conv_body(checkpoint_sequential(self.body, self.num_blocks // self.blocks_per_checkpoint, feat))
feat = feat + body_feat feat = feat + body_feat
# upsample # upsample
feat = self.lrelu( feat = self.lrelu(
@ -143,3 +188,8 @@ class RRDBNet(nn.Module):
self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest'))) self.conv_up2(F.interpolate(feat, scale_factor=2, mode='nearest')))
out = self.conv_last(self.lrelu(self.conv_hr(feat))) out = self.conv_last(self.lrelu(self.conv_hr(feat)))
return out return out
def visual_dbg(self, step, path):
for i, bm in enumerate(self.body):
torchvision.utils.save_image(bm.bypass_map.cpu().float(), os.path.join(path, "%i_bypass_%i.png" % (step, i+1)))

View File

@ -39,6 +39,10 @@ def define_G(opt, net_key='network_G', scale=None):
elif which_model == 'RRDBNet': elif which_model == 'RRDBNet':
netG = RRDBNet_arch.RRDBNet(in_channels=opt_net['in_nc'], out_channels=opt_net['out_nc'], netG = RRDBNet_arch.RRDBNet(in_channels=opt_net['in_nc'], out_channels=opt_net['out_nc'],
mid_channels=opt_net['nf'], num_blocks=opt_net['nb']) mid_channels=opt_net['nf'], num_blocks=opt_net['nb'])
elif which_model == 'RRDBNetBypass':
netG = RRDBNet_arch.RRDBNet(in_channels=opt_net['in_nc'], out_channels=opt_net['out_nc'],
mid_channels=opt_net['nf'], num_blocks=opt_net['nb'], body_block=RRDBNet_arch.RRDBWithBypass,
blocks_per_checkpoint=opt_net['blocks_per_checkpoint'])
elif which_model == 'rcan': elif which_model == 'rcan':
#args: n_resgroups, n_resblocks, res_scale, reduction, scale, n_feats #args: n_resgroups, n_resblocks, res_scale, reduction, scale, n_feats
opt_net['rgb_range'] = 255 opt_net['rgb_range'] = 255

View File

@ -265,7 +265,7 @@ class Trainer:
if __name__ == '__main__': if __name__ == '__main__':
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_prog_imgset_multifaceted_chained.yml') parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_mi1_rrdb4x_6bl_bypass.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher') parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
parser.add_argument('--local_rank', type=int, default=0) parser.add_argument('--local_rank', type=int, default=0)
args = parser.parse_args() args = parser.parse_args()

View File

@ -278,7 +278,7 @@ class Trainer:
if __name__ == '__main__': if __name__ == '__main__':
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_mi1_tecogen.yml') parser.add_argument('-opt', type=str, help='Path to option YAML file.', default='../options/train_exd_mi1_rrdb4x_10bl_bypass.yml')
parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher') parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher')
args = parser.parse_args() args = parser.parse_args()
opt = option.parse(args.opt, is_train=True) opt = option.parse(args.opt, is_train=True)