new rev of ctc_code_gen with surrogate LM loss

This commit is contained in:
James Betker 2022-02-10 23:09:57 -07:00
parent d1d1ae32a1
commit 618a20412a

View File

@ -12,6 +12,21 @@ from trainer.networks import register_model
from utils.util import opt_get from utils.util import opt_get
def clustered_mask(probability, shape, dev, lateral_expansion_radius_max=3):
"""
Produces a masking vector of the specified shape where each element has probability to be zero.
lateral_expansion_radius_max neighbors of any element that is zero also have a 50% chance to be zero.
Effectively, this produces clusters of masks tending to be lateral_expansion_radius_max wide.
Note: This means the algorithm has a far higher output probability for zeros then <probability>.
"""
mask = torch.rand(shape, device=dev)
mask = (mask < probability).float()
kernel = torch.tensor([.5 for _ in range(lateral_expansion_radius_max)] + [1] + [.5 for _ in range(lateral_expansion_radius_max)], device=dev)
mask = F.conv1d(mask.unsqueeze(1), kernel.view(1,1,2*lateral_expansion_radius_max+1), padding=lateral_expansion_radius_max).squeeze(1)
return torch.bernoulli(torch.clamp(mask, 0, 1)) == 0 # ==0 logically inverts the mask.
class CheckpointedTransformerWrapper(nn.Module): class CheckpointedTransformerWrapper(nn.Module):
""" """
Wraps a ContinuousTransformerWrapper and applies CheckpointedLayer to each layer and permutes from channels-mid Wraps a ContinuousTransformerWrapper and applies CheckpointedLayer to each layer and permutes from channels-mid
@ -30,12 +45,14 @@ class CheckpointedTransformerWrapper(nn.Module):
class CtcCodeGenerator(nn.Module): class CtcCodeGenerator(nn.Module):
def __init__(self, model_dim=512, layers=10, num_heads=8, dropout=.1, ctc_codes=36, max_pad=121, max_repeat=30): def __init__(self, model_dim=512, layers=10, num_heads=8, dropout=.1, ctc_codes=36, max_pad=121, max_repeat=30, mask_prob=.1):
super().__init__() super().__init__()
self.max_pad = max_pad self.max_pad = max_pad
self.max_repeat = max_repeat self.max_repeat = max_repeat
self.mask_probability = mask_prob
self.conditioning_encoder = ConditioningEncoder(80, model_dim, num_attn_heads=num_heads, mean=True) self.conditioning_encoder = ConditioningEncoder(80, model_dim, num_attn_heads=num_heads, mean=True)
self.initial_embedding = nn.Embedding(ctc_codes, model_dim) self.initial_embedding = nn.Embedding(ctc_codes, model_dim)
self.combiner = nn.Linear(model_dim*2, model_dim)
self.transformer = TransformerWrapper( self.transformer = TransformerWrapper(
num_tokens=max_pad*max_repeat+1, num_tokens=max_pad*max_repeat+1,
max_seq_len=-1, # Unneeded for rotary embeddings. max_seq_len=-1, # Unneeded for rotary embeddings.
@ -51,6 +68,9 @@ class CtcCodeGenerator(nn.Module):
) )
) )
self.transformer.token_emb = nn.Identity() # This class handles the initial embeddings. self.transformer.token_emb = nn.Identity() # This class handles the initial embeddings.
self.transformer.to_logits = nn.Identity()
self.ctc_head = nn.Linear(model_dim, max_pad*max_repeat+1)
self.inp_head = nn.Linear(model_dim, ctc_codes)
def forward(self, conditioning_input, codes, separators, repeats, unpadded_lengths): def forward(self, conditioning_input, codes, separators, repeats, unpadded_lengths):
max_len = unpadded_lengths.max() max_len = unpadded_lengths.max()
@ -58,6 +78,7 @@ class CtcCodeGenerator(nn.Module):
loss_mask = torch.ones_like(codes) loss_mask = torch.ones_like(codes)
for i, l in enumerate(unpadded_lengths): for i, l in enumerate(unpadded_lengths):
loss_mask[i, l:] = 0 loss_mask[i, l:] = 0
codes = clustered_mask(self.mask_probability, codes.shape, codes.device) * codes
if separators.max() > self.max_pad: if separators.max() > self.max_pad:
print(f"Got unexpectedly long separators. Max: {separators.max()}, {separators}") print(f"Got unexpectedly long separators. Max: {separators.max()}, {separators}")
@ -71,22 +92,19 @@ class CtcCodeGenerator(nn.Module):
labels = separators + repeats * self.max_pad labels = separators + repeats * self.max_pad
# Perform conditioning encoder in FP32, with the transformer in FP16 # Perform conditioning encoder in FP32, with the transformer in FP16
conditioning_input = conditioning_input.unsqueeze(1) if len(conditioning_input.shape) == 3 else conditioning_input cond = self.conditioning_encoder(conditioning_input).unsqueeze(1).repeat(1,codes.shape[1],1)
conds = [] h = torch.cat([cond, self.initial_embedding(codes)], dim=-1)
for j in range(conditioning_input.shape[1]): h = self.combiner(h)
conds.append(self.conditioning_encoder(conditioning_input[:, j]))
conds = torch.stack(conds, dim=1)
with torch.autocast(codes.device.type): with torch.autocast(codes.device.type):
h = self.initial_embedding(codes)
h = torch.cat([conds, h], dim=1)
logits = self.transformer(h) logits = self.transformer(h)
# Ignore the cond outputs ctc_pred = self.ctc_head(logits)
logits = logits[:, conds.shape[1]:, :] code_pred = self.inp_head(logits)
loss = F.cross_entropy(logits.float().permute(0,2,1), labels, reduction='none') ctcloss = F.cross_entropy(ctc_pred.float().permute(0,2,1), labels, reduction='none')
loss = torch.mean(loss * loss_mask) ctcloss = torch.mean(ctcloss * loss_mask)
return loss codeloss = F.cross_entropy(code_pred.float().permute(0,2,1), codes, reduction='none')
codeloss = torch.mean(codeloss * loss_mask)
return ctcloss, codeloss
def generate(self, speech_conditioning_input, texts): def generate(self, speech_conditioning_input, texts):
codes = [] codes = []
@ -158,10 +176,13 @@ def inf():
if __name__ == '__main__': if __name__ == '__main__':
#inf() #inf()
mask = clustered_mask(.1, (4,100), 'cpu')
model = CtcCodeGenerator() model = CtcCodeGenerator()
inps = torch.randint(0,36, (4, 300)) inps = torch.randint(0,36, (4, 300))
pads = torch.randint(0,100, (4,300)) pads = torch.randint(0,100, (4,300))
repeats = torch.randint(1,20, (4,300)) repeats = torch.randint(1,20, (4,300))
conds = torch.randn(4,3,80,600) conds = torch.randn(4,80,600)
loss = model(conds, inps, pads, repeats, torch.tensor([250, 300, 280, 30])) loss1, loss2 = model(conds, inps, pads, repeats, torch.tensor([250, 300, 280, 30]))
print(loss.shape) print(loss1.shape, loss2.shape)