diff --git a/codes/models/gpt_voice/text_voice_clip.py b/codes/models/gpt_voice/text_voice_clip.py index 1a3f2086..2cddcfe4 100644 --- a/codes/models/gpt_voice/text_voice_clip.py +++ b/codes/models/gpt_voice/text_voice_clip.py @@ -32,14 +32,16 @@ class VoiceCLIP(nn.Module): dim_text=512, dim_speech=512, dim_latent=512, - num_text_tokens=10000, + num_text_tokens=256, text_enc_depth=6, - text_seq_len=200, + text_seq_len=120, text_heads=8, num_speech_tokens=8192, speech_enc_depth=6, speech_heads=8, speech_seq_len=250, + text_mask_percentage: 0, + wav_token_compression = 1024, ): super().__init__() self.text_emb = nn.Embedding(num_text_tokens, dim_text) @@ -55,15 +57,27 @@ class VoiceCLIP(nn.Module): self.to_speech_latent = nn.Linear(dim_speech, dim_latent, bias=False) self.temperature = nn.Parameter(torch.tensor(1.)) + self.text_mask_percentage = text_mask_percentage + self.wav_token_compression = wav_token_compression def forward( self, text, + text_lengths, speech_tokens, - text_mask=None, + wav_lengths, return_loss=False ): + # This model will receive micro-batches with a ton of padding for both the text and MELs. Ameliorate this by + # chopping the inputs by the maximum actual length. + max_text_len = text_lengths.max() + text = text[:, :max_text_len] + max_mel_len = wav_lengths.max() // self.wav_token_compression + speech_tokens = speech_tokens[:, :max_mel_len] + b, device = text.shape[0], text.device + if self.text_mask_percentage > 0: + text_mask = torch.rand_like(text.float()) > self.text_mask_percentage text_emb = self.text_emb(text) text_emb += self.text_pos_emb(torch.arange(text.shape[1], device=device)) @@ -74,7 +88,7 @@ class VoiceCLIP(nn.Module): enc_text = self.text_transformer(text_emb, mask=text_mask) enc_speech = self.speech_transformer(speech_emb) - if exists(text_mask): + if self.text_mask_percentage > 0: text_latents = masked_mean(enc_text, text_mask, dim=1) else: text_latents = enc_text.mean(dim=1) @@ -104,7 +118,7 @@ def register_voice_clip(opt_net, opt): if __name__ == '__main__': - clip = VoiceCLIP() - clip(torch.randint(0,1000,(2,200)), + clip = VoiceCLIP(text_mask_percentage=.2) + clip(torch.randint(0,256,(2,120)), torch.randint(0,8192,(2,250)), return_loss=True) \ No newline at end of file