Make it even better

This commit is contained in:
James Betker 2022-03-21 14:50:59 -06:00
parent e735d8e1fa
commit 723f324eda

View File

@ -76,28 +76,26 @@ class DiffusionTtsFlat(nn.Module):
)
)
self.latent_converter = nn.Conv1d(in_latent_channels, model_channels, 1)
if in_channels > 60: # It's a spectrogram.
self.contextual_embedder = nn.Sequential(nn.Conv1d(in_channels,model_channels,3,padding=1,stride=2),
CheckpointedXTransformerEncoder(
needs_permute=True,
max_seq_len=-1,
use_pos_emb=False,
attn_layers=Encoder(
dim=model_channels,
depth=4,
heads=num_heads,
ff_dropout=dropout,
attn_dropout=dropout,
use_rmsnorm=True,
ff_glu=True,
rotary_emb_dim=True,
)
))
else:
self.contextual_embedder = AudioMiniEncoder(1, model_channels, base_channels=32, depth=6, resnet_blocks=1,
attn_blocks=3, num_attn_heads=8, dropout=dropout, downsample_factor=4, kernel_size=5)
# The contextual embedder processes a sample MEL that the output should be "like".
self.contextual_embedder = nn.Sequential(nn.Conv1d(in_channels,model_channels,3,padding=1,stride=2),
CheckpointedXTransformerEncoder(
needs_permute=True,
max_seq_len=-1,
use_pos_emb=False,
attn_layers=Encoder(
dim=model_channels,
depth=4,
heads=num_heads,
ff_dropout=dropout,
attn_dropout=dropout,
use_rmsnorm=True,
ff_glu=True,
rotary_emb_dim=True,
)
))
self.conditioning_conv = nn.Conv1d(model_channels*2, model_channels, 1)
self.unconditioned_embedding = nn.Parameter(torch.randn(1,model_channels,1))
# This is a further encoder extension that integrates a timestep signal into the conditioning signal.
self.conditioning_timestep_integrator = CheckpointedXTransformerEncoder(
needs_permute=True,
max_seq_len=-1,
@ -117,6 +115,7 @@ class DiffusionTtsFlat(nn.Module):
)
self.integrate_conditioning = nn.Conv1d(model_channels*2, model_channels, 1)
# This is the main processing module.
self.layers = CheckpointedXTransformerEncoder(
needs_permute=True,
max_seq_len=-1,
@ -151,18 +150,7 @@ class DiffusionTtsFlat(nn.Module):
}
return groups
def forward(self, x, timesteps, aligned_conditioning, conditioning_input, conditioning_free=False):
"""
Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:param aligned_conditioning: an aligned latent or sequence of tokens providing useful data about the sample to be produced.
:param conditioning_input: a full-resolution audio clip that is used as a reference to the style you want decoded.
:param lr_input: for super-sampling models, a guidance audio clip at a lower sampling rate.
:param conditioning_free: When set, all conditioning inputs (including tokens and conditioning_input) will not be considered.
:return: an [N x C x ...] Tensor of outputs.
"""
def get_conditioning_encodings(self, aligned_conditioning, conditioning_input, conditioning_free, return_unused=False):
# Shuffle aligned_latent to BxCxS format
if is_latent(aligned_conditioning):
aligned_conditioning = aligned_conditioning.permute(0, 2, 1)
@ -184,14 +172,31 @@ class DiffusionTtsFlat(nn.Module):
unused_params.extend(list(self.latent_converter.parameters()))
cond_emb_spread = cond_emb.unsqueeze(-1).repeat(1, 1, code_emb.shape[-1])
code_emb = self.conditioning_conv(torch.cat([cond_emb_spread, code_emb], dim=1))
# Mask out the conditioning branch for whole batch elements, implementing something similar to classifier-free guidance.
if self.training and self.unconditioned_percentage > 0:
unconditioned_batches = torch.rand((code_emb.shape[0], 1, 1),
device=code_emb.device) < self.unconditioned_percentage
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(x.shape[0], 1, 1),
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(conditioning_input.shape[0], 1, 1),
code_emb)
# Everything after this comment is timestep dependent.
if return_unused:
return code_emb, unused_params
return code_emb
def forward(self, x, timesteps, aligned_conditioning, conditioning_input, conditioning_free=False):
"""
Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:param aligned_conditioning: an aligned latent or sequence of tokens providing useful data about the sample to be produced.
:param conditioning_input: a full-resolution audio clip that is used as a reference to the style you want decoded.
:param conditioning_free: When set, all conditioning inputs (including tokens and conditioning_input) will not be considered.
:return: an [N x C x ...] Tensor of outputs.
"""
code_emb, unused_params = self.get_conditioning_encodings(aligned_conditioning, conditioning_input, conditioning_free, return_unused=True)
# Everything after this comment is timestep-dependent.
time_emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
code_emb = self.conditioning_timestep_integrator(code_emb, time_emb=time_emb)
x = self.inp_block(x)