forked from mrq/DL-Art-School
Some work on extensible trainer
This commit is contained in:
parent
0c98c61f4a
commit
74cdaa2226
|
@ -31,16 +31,16 @@ class ExtensibleTrainer(BaseModel):
|
||||||
train_opt = opt['train']
|
train_opt = opt['train']
|
||||||
self.mega_batch_factor = 1
|
self.mega_batch_factor = 1
|
||||||
|
|
||||||
self.netG = {}
|
self.netsG = {}
|
||||||
self.netD = {}
|
self.netsD = {}
|
||||||
self.networks = []
|
self.networks = []
|
||||||
for name, net in opt['networks'].items():
|
for name, net in opt['networks'].items():
|
||||||
if net['type'] == 'generator':
|
if net['type'] == 'generator':
|
||||||
new_net = networks.define_G(net)
|
new_net = networks.define_G(net)
|
||||||
self.netG[name] = new_net
|
self.netsG[name] = new_net
|
||||||
elif net['type'] == 'discriminator':
|
elif net['type'] == 'discriminator':
|
||||||
new_net = networks.define_D(net)
|
new_net = networks.define_D(net)
|
||||||
self.netD[name] = new_net
|
self.netsD[name] = new_net
|
||||||
else:
|
else:
|
||||||
raise NotImplementedError("Can only handle generators and discriminators")
|
raise NotImplementedError("Can only handle generators and discriminators")
|
||||||
self.networks.append(new_net)
|
self.networks.append(new_net)
|
||||||
|
@ -74,7 +74,7 @@ class ExtensibleTrainer(BaseModel):
|
||||||
# Backpush the wrapped networks into the network dicts..
|
# Backpush the wrapped networks into the network dicts..
|
||||||
found = 0
|
found = 0
|
||||||
for dnet in dnets:
|
for dnet in dnets:
|
||||||
for net_dict in [self.netD, self.netG]:
|
for net_dict in [self.netsD, self.netsG]:
|
||||||
for k, v in net_dict.items():
|
for k, v in net_dict.items():
|
||||||
if v == dnet:
|
if v == dnet:
|
||||||
net_dict[k] = dnet
|
net_dict[k] = dnet
|
||||||
|
@ -84,7 +84,7 @@ class ExtensibleTrainer(BaseModel):
|
||||||
# Initialize the training steps
|
# Initialize the training steps
|
||||||
self.steps = []
|
self.steps = []
|
||||||
for step in opt['steps']:
|
for step in opt['steps']:
|
||||||
step = create_step(step, self.netG, self.netD)
|
step = create_step(step, self.netsG, self.netsD)
|
||||||
self.steps.append(step)
|
self.steps.append(step)
|
||||||
self.optimizers.extend(step.get_optimizers())
|
self.optimizers.extend(step.get_optimizers())
|
||||||
|
|
||||||
|
@ -119,7 +119,7 @@ class ExtensibleTrainer(BaseModel):
|
||||||
nets_to_train = s.get_networks_trained()
|
nets_to_train = s.get_networks_trained()
|
||||||
for name, net in self.networks.items():
|
for name, net in self.networks.items():
|
||||||
net_enabled = name in nets_to_train
|
net_enabled = name in nets_to_train
|
||||||
for p in self.netG.parameters():
|
for p in self.netsG.parameters():
|
||||||
if p.dtype != torch.int64 and p.dtype != torch.bool:
|
if p.dtype != torch.int64 and p.dtype != torch.bool:
|
||||||
p.requires_grad = net_enabled
|
p.requires_grad = net_enabled
|
||||||
else:
|
else:
|
||||||
|
@ -135,7 +135,7 @@ class ExtensibleTrainer(BaseModel):
|
||||||
|
|
||||||
|
|
||||||
# G
|
# G
|
||||||
for p in self.netD.parameters():
|
for p in self.netsD.parameters():
|
||||||
p.requires_grad = False
|
p.requires_grad = False
|
||||||
if self.spsr_enabled:
|
if self.spsr_enabled:
|
||||||
for p in self.netD_grad.parameters():
|
for p in self.netD_grad.parameters():
|
||||||
|
@ -147,15 +147,15 @@ class ExtensibleTrainer(BaseModel):
|
||||||
# Turning off G-grad is required to enable mega-batching and D_update_ratio to work together for some reason.
|
# Turning off G-grad is required to enable mega-batching and D_update_ratio to work together for some reason.
|
||||||
if step % self.D_update_ratio == 0 and step >= self.D_init_iters:
|
if step % self.D_update_ratio == 0 and step >= self.D_init_iters:
|
||||||
if self.spsr_enabled and self.branch_pretrain and step < self.branch_init_iters:
|
if self.spsr_enabled and self.branch_pretrain and step < self.branch_init_iters:
|
||||||
for k, v in self.netG.named_parameters():
|
for k, v in self.netsG.named_parameters():
|
||||||
if v.dtype != torch.int64 and v.dtype != torch.bool:
|
if v.dtype != torch.int64 and v.dtype != torch.bool:
|
||||||
v.requires_grad = '_branch_pretrain' in k
|
v.requires_grad = '_branch_pretrain' in k
|
||||||
else:
|
else:
|
||||||
for p in self.netG.parameters():
|
for p in self.netsG.parameters():
|
||||||
if p.dtype != torch.int64 and p.dtype != torch.bool:
|
if p.dtype != torch.int64 and p.dtype != torch.bool:
|
||||||
p.requires_grad = True
|
p.requires_grad = True
|
||||||
else:
|
else:
|
||||||
for p in self.netG.parameters():
|
for p in self.netsG.parameters():
|
||||||
p.requires_grad = False
|
p.requires_grad = False
|
||||||
|
|
||||||
# Calculate a standard deviation for the gaussian noise to be applied to the discriminator, termed noise-theta.
|
# Calculate a standard deviation for the gaussian noise to be applied to the discriminator, termed noise-theta.
|
||||||
|
@ -179,17 +179,17 @@ class ExtensibleTrainer(BaseModel):
|
||||||
if self.spsr_enabled:
|
if self.spsr_enabled:
|
||||||
using_gan_img = False
|
using_gan_img = False
|
||||||
# SPSR models have outputs from three different branches.
|
# SPSR models have outputs from three different branches.
|
||||||
fake_H_branch, fake_GenOut, grad_LR = self.netG(var_L)
|
fake_H_branch, fake_GenOut, grad_LR = self.netsG(var_L)
|
||||||
fea_GenOut = fake_GenOut
|
fea_GenOut = fake_GenOut
|
||||||
self.spsr_grad_GenOut.append(fake_H_branch)
|
self.spsr_grad_GenOut.append(fake_H_branch)
|
||||||
# Get image gradients for later use.
|
# Get image gradients for later use.
|
||||||
fake_H_grad = self.get_grad_nopadding(fake_GenOut)
|
fake_H_grad = self.get_grad_nopadding(fake_GenOut)
|
||||||
else:
|
else:
|
||||||
if random.random() > self.gan_lq_img_use_prob:
|
if random.random() > self.gan_lq_img_use_prob:
|
||||||
fea_GenOut, fake_GenOut = self.netG(var_L)
|
fea_GenOut, fake_GenOut = self.netsG(var_L)
|
||||||
using_gan_img = False
|
using_gan_img = False
|
||||||
else:
|
else:
|
||||||
fea_GenOut, fake_GenOut = self.netG(var_LGAN)
|
fea_GenOut, fake_GenOut = self.netsG(var_LGAN)
|
||||||
using_gan_img = True
|
using_gan_img = True
|
||||||
|
|
||||||
if _profile:
|
if _profile:
|
||||||
|
@ -262,13 +262,13 @@ class ExtensibleTrainer(BaseModel):
|
||||||
if self.l_gan_w > 0:
|
if self.l_gan_w > 0:
|
||||||
if self.opt['train']['gan_type'] in ['gan', 'pixgan', 'pixgan_fea', 'crossgan']:
|
if self.opt['train']['gan_type'] in ['gan', 'pixgan', 'pixgan_fea', 'crossgan']:
|
||||||
if self.opt['train']['gan_type'] == 'crossgan':
|
if self.opt['train']['gan_type'] == 'crossgan':
|
||||||
pred_g_fake = self.netD(fake_GenOut, var_L)
|
pred_g_fake = self.netsD(fake_GenOut, var_L)
|
||||||
else:
|
else:
|
||||||
pred_g_fake = self.netD(fake_GenOut)
|
pred_g_fake = self.netsD(fake_GenOut)
|
||||||
l_g_gan = self.l_gan_w * self.cri_gan(pred_g_fake, True)
|
l_g_gan = self.l_gan_w * self.cri_gan(pred_g_fake, True)
|
||||||
elif self.opt['train']['gan_type'] == 'ragan':
|
elif self.opt['train']['gan_type'] == 'ragan':
|
||||||
pred_d_real = self.netD(var_ref).detach()
|
pred_d_real = self.netsD(var_ref).detach()
|
||||||
pred_g_fake = self.netD(fake_GenOut)
|
pred_g_fake = self.netsD(fake_GenOut)
|
||||||
l_g_gan = self.l_gan_w * (
|
l_g_gan = self.l_gan_w * (
|
||||||
self.cri_gan(pred_d_real - torch.mean(pred_g_fake), False) +
|
self.cri_gan(pred_d_real - torch.mean(pred_g_fake), False) +
|
||||||
self.cri_gan(pred_g_fake - torch.mean(pred_d_real), True)) / 2
|
self.cri_gan(pred_g_fake - torch.mean(pred_d_real), True)) / 2
|
||||||
|
@ -277,9 +277,9 @@ class ExtensibleTrainer(BaseModel):
|
||||||
|
|
||||||
if self.spsr_enabled and self.cri_grad_gan:
|
if self.spsr_enabled and self.cri_grad_gan:
|
||||||
if self.opt['train']['gan_type'] == 'crossgan':
|
if self.opt['train']['gan_type'] == 'crossgan':
|
||||||
pred_g_fake_grad = self.netD(fake_H_grad, var_L)
|
pred_g_fake_grad = self.netsD(fake_H_grad, var_L)
|
||||||
else:
|
else:
|
||||||
pred_g_fake_grad = self.netD(fake_H_grad)
|
pred_g_fake_grad = self.netsD(fake_H_grad)
|
||||||
pred_g_fake_grad_branch = self.netD_grad(fake_H_branch)
|
pred_g_fake_grad_branch = self.netD_grad(fake_H_branch)
|
||||||
if self.opt['train']['gan_type'] in ['gan', 'pixgan', 'pixgan_fea', 'crossgan']:
|
if self.opt['train']['gan_type'] in ['gan', 'pixgan', 'pixgan_fea', 'crossgan']:
|
||||||
l_g_gan_grad = self.l_gan_grad_w * self.cri_grad_gan(pred_g_fake_grad, True)
|
l_g_gan_grad = self.l_gan_grad_w * self.cri_grad_gan(pred_g_fake_grad, True)
|
||||||
|
@ -313,7 +313,7 @@ class ExtensibleTrainer(BaseModel):
|
||||||
|
|
||||||
# D
|
# D
|
||||||
if self.l_gan_w > 0 and step >= self.G_warmup:
|
if self.l_gan_w > 0 and step >= self.G_warmup:
|
||||||
for p in self.netD.parameters():
|
for p in self.netsD.parameters():
|
||||||
if p.dtype != torch.int64 and p.dtype != torch.bool:
|
if p.dtype != torch.int64 and p.dtype != torch.bool:
|
||||||
p.requires_grad = True
|
p.requires_grad = True
|
||||||
|
|
||||||
|
@ -328,9 +328,9 @@ class ExtensibleTrainer(BaseModel):
|
||||||
# Re-compute generator outputs with the GAN inputs.
|
# Re-compute generator outputs with the GAN inputs.
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
if self.spsr_enabled:
|
if self.spsr_enabled:
|
||||||
_, fake_H, _ = self.netG(var_LGAN)
|
_, fake_H, _ = self.netsG(var_LGAN)
|
||||||
else:
|
else:
|
||||||
_, fake_H = self.netG(var_LGAN)
|
_, fake_H = self.netsG(var_LGAN)
|
||||||
fake_H = fake_H.detach()
|
fake_H = fake_H.detach()
|
||||||
|
|
||||||
if _profile:
|
if _profile:
|
||||||
|
@ -346,26 +346,26 @@ class ExtensibleTrainer(BaseModel):
|
||||||
if self.opt['train']['gan_type'] == 'pixgan_fea':
|
if self.opt['train']['gan_type'] == 'pixgan_fea':
|
||||||
# Compute a feature loss which is added to the GAN loss computed later to guide the discriminator better.
|
# Compute a feature loss which is added to the GAN loss computed later to guide the discriminator better.
|
||||||
disc_fea_scale = .1
|
disc_fea_scale = .1
|
||||||
_, fea_real = self.netD(var_ref, output_feature_vector=True)
|
_, fea_real = self.netsD(var_ref, output_feature_vector=True)
|
||||||
actual_fea = self.netF(var_ref)
|
actual_fea = self.netF(var_ref)
|
||||||
l_d_fea_real = self.cri_fea(fea_real, actual_fea) * disc_fea_scale / self.mega_batch_factor
|
l_d_fea_real = self.cri_fea(fea_real, actual_fea) * disc_fea_scale / self.mega_batch_factor
|
||||||
_, fea_fake = self.netD(fake_H, output_feature_vector=True)
|
_, fea_fake = self.netsD(fake_H, output_feature_vector=True)
|
||||||
actual_fea = self.netF(fake_H)
|
actual_fea = self.netF(fake_H)
|
||||||
l_d_fea_fake = self.cri_fea(fea_fake, actual_fea) * disc_fea_scale / self.mega_batch_factor
|
l_d_fea_fake = self.cri_fea(fea_fake, actual_fea) * disc_fea_scale / self.mega_batch_factor
|
||||||
if self.opt['train']['gan_type'] == 'crossgan':
|
if self.opt['train']['gan_type'] == 'crossgan':
|
||||||
# need to forward and backward separately, since batch norm statistics differ
|
# need to forward and backward separately, since batch norm statistics differ
|
||||||
# real
|
# real
|
||||||
pred_d_real = self.netD(var_ref, var_L)
|
pred_d_real = self.netsD(var_ref, var_L)
|
||||||
l_d_real = self.cri_gan(pred_d_real, True)
|
l_d_real = self.cri_gan(pred_d_real, True)
|
||||||
l_d_real_log = l_d_real
|
l_d_real_log = l_d_real
|
||||||
# fake
|
# fake
|
||||||
pred_d_fake = self.netD(fake_H, var_L)
|
pred_d_fake = self.netsD(fake_H, var_L)
|
||||||
l_d_fake = self.cri_gan(pred_d_fake, False)
|
l_d_fake = self.cri_gan(pred_d_fake, False)
|
||||||
l_d_fake_log = l_d_fake
|
l_d_fake_log = l_d_fake
|
||||||
# mismatched
|
# mismatched
|
||||||
mismatched_L = torch.roll(var_L, shifts=1, dims=0)
|
mismatched_L = torch.roll(var_L, shifts=1, dims=0)
|
||||||
pred_d_real_mismatched = self.netD(var_ref, mismatched_L)
|
pred_d_real_mismatched = self.netsD(var_ref, mismatched_L)
|
||||||
pred_d_fake_mismatched = self.netD(fake_H, mismatched_L)
|
pred_d_fake_mismatched = self.netsD(fake_H, mismatched_L)
|
||||||
l_d_mismatched = (self.cri_gan(pred_d_real_mismatched, False) + self.cri_gan(pred_d_fake_mismatched, False)) / 2
|
l_d_mismatched = (self.cri_gan(pred_d_real_mismatched, False) + self.cri_gan(pred_d_fake_mismatched, False)) / 2
|
||||||
|
|
||||||
l_d_total = (l_d_real + l_d_fake + l_d_mismatched) / 3
|
l_d_total = (l_d_real + l_d_fake + l_d_mismatched) / 3
|
||||||
|
@ -374,11 +374,11 @@ class ExtensibleTrainer(BaseModel):
|
||||||
l_d_total_scaled.backward()
|
l_d_total_scaled.backward()
|
||||||
elif self.opt['train']['gan_type'] == 'gan':
|
elif self.opt['train']['gan_type'] == 'gan':
|
||||||
# real
|
# real
|
||||||
pred_d_real = self.netD(var_ref)
|
pred_d_real = self.netsD(var_ref)
|
||||||
l_d_real = self.cri_gan(pred_d_real, True) / self.mega_batch_factor
|
l_d_real = self.cri_gan(pred_d_real, True) / self.mega_batch_factor
|
||||||
l_d_real_log = l_d_real * self.mega_batch_factor
|
l_d_real_log = l_d_real * self.mega_batch_factor
|
||||||
# fake
|
# fake
|
||||||
pred_d_fake = self.netD(fake_H)
|
pred_d_fake = self.netsD(fake_H)
|
||||||
l_d_fake = self.cri_gan(pred_d_fake, False) / self.mega_batch_factor
|
l_d_fake = self.cri_gan(pred_d_fake, False) / self.mega_batch_factor
|
||||||
l_d_fake_log = l_d_fake * self.mega_batch_factor
|
l_d_fake_log = l_d_fake * self.mega_batch_factor
|
||||||
|
|
||||||
|
@ -386,7 +386,7 @@ class ExtensibleTrainer(BaseModel):
|
||||||
with amp.scale_loss(l_d_total, self.optimizer_D, loss_id=1) as l_d_total_scaled:
|
with amp.scale_loss(l_d_total, self.optimizer_D, loss_id=1) as l_d_total_scaled:
|
||||||
l_d_total_scaled.backward()
|
l_d_total_scaled.backward()
|
||||||
elif 'pixgan' in self.opt['train']['gan_type']:
|
elif 'pixgan' in self.opt['train']['gan_type']:
|
||||||
pixdisc_channels, pixdisc_output_reduction = self.netD.module.pixgan_parameters()
|
pixdisc_channels, pixdisc_output_reduction = self.netsD.module.pixgan_parameters()
|
||||||
disc_output_shape = (var_ref.shape[0], pixdisc_channels, var_ref.shape[2] // pixdisc_output_reduction, var_ref.shape[3] // pixdisc_output_reduction)
|
disc_output_shape = (var_ref.shape[0], pixdisc_channels, var_ref.shape[2] // pixdisc_output_reduction, var_ref.shape[3] // pixdisc_output_reduction)
|
||||||
b, _, w, h = var_ref.shape
|
b, _, w, h = var_ref.shape
|
||||||
real = torch.ones((b, pixdisc_channels, w, h), device=var_ref.device)
|
real = torch.ones((b, pixdisc_channels, w, h), device=var_ref.device)
|
||||||
|
@ -424,12 +424,12 @@ class ExtensibleTrainer(BaseModel):
|
||||||
fake = fake.view(-1, 1)
|
fake = fake.view(-1, 1)
|
||||||
|
|
||||||
# real
|
# real
|
||||||
pred_d_real = self.netD(var_ref)
|
pred_d_real = self.netsD(var_ref)
|
||||||
l_d_real = self.cri_gan(pred_d_real, real) / self.mega_batch_factor
|
l_d_real = self.cri_gan(pred_d_real, real) / self.mega_batch_factor
|
||||||
l_d_real_log = l_d_real * self.mega_batch_factor
|
l_d_real_log = l_d_real * self.mega_batch_factor
|
||||||
l_d_real += l_d_fea_real
|
l_d_real += l_d_fea_real
|
||||||
# fake
|
# fake
|
||||||
pred_d_fake = self.netD(fake_H)
|
pred_d_fake = self.netsD(fake_H)
|
||||||
l_d_fake = self.cri_gan(pred_d_fake, fake) / self.mega_batch_factor
|
l_d_fake = self.cri_gan(pred_d_fake, fake) / self.mega_batch_factor
|
||||||
l_d_fake_log = l_d_fake * self.mega_batch_factor
|
l_d_fake_log = l_d_fake * self.mega_batch_factor
|
||||||
l_d_fake += l_d_fea_fake
|
l_d_fake += l_d_fea_fake
|
||||||
|
@ -445,8 +445,8 @@ class ExtensibleTrainer(BaseModel):
|
||||||
pdf = pdf / torch.max(pdf)
|
pdf = pdf / torch.max(pdf)
|
||||||
fake_disc_images.append(pdf.view(disc_output_shape))
|
fake_disc_images.append(pdf.view(disc_output_shape))
|
||||||
elif self.opt['train']['gan_type'] == 'ragan':
|
elif self.opt['train']['gan_type'] == 'ragan':
|
||||||
pred_d_fake = self.netD(fake_H)
|
pred_d_fake = self.netsD(fake_H)
|
||||||
pred_d_real = self.netD(var_ref)
|
pred_d_real = self.netsD(var_ref)
|
||||||
l_d_real = self.cri_gan(pred_d_real - torch.mean(pred_d_fake), True)
|
l_d_real = self.cri_gan(pred_d_real - torch.mean(pred_d_fake), True)
|
||||||
l_d_real_log = l_d_real
|
l_d_real_log = l_d_real
|
||||||
l_d_fake = self.cri_gan(pred_d_fake - torch.mean(pred_d_real), False)
|
l_d_fake = self.cri_gan(pred_d_fake - torch.mean(pred_d_real), False)
|
||||||
|
@ -597,19 +597,19 @@ class ExtensibleTrainer(BaseModel):
|
||||||
return self.cri_fea(fake_fea, real_fea).item()
|
return self.cri_fea(fake_fea, real_fea).item()
|
||||||
|
|
||||||
def test(self):
|
def test(self):
|
||||||
self.netG.eval()
|
self.netsG.eval()
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
if self.spsr_enabled:
|
if self.spsr_enabled:
|
||||||
self.fake_H_branch = []
|
self.fake_H_branch = []
|
||||||
self.fake_GenOut = []
|
self.fake_GenOut = []
|
||||||
self.grad_LR = []
|
self.grad_LR = []
|
||||||
fake_H_branch, fake_GenOut, grad_LR = self.netG(self.var_L[0])
|
fake_H_branch, fake_GenOut, grad_LR = self.netsG(self.var_L[0])
|
||||||
self.fake_H_branch.append(fake_H_branch)
|
self.fake_H_branch.append(fake_H_branch)
|
||||||
self.fake_GenOut.append(fake_GenOut)
|
self.fake_GenOut.append(fake_GenOut)
|
||||||
self.grad_LR.append(grad_LR)
|
self.grad_LR.append(grad_LR)
|
||||||
else:
|
else:
|
||||||
self.fake_GenOut = [self.netG(self.var_L[0])]
|
self.fake_GenOut = [self.netsG(self.var_L[0])]
|
||||||
self.netG.train()
|
self.netsG.train()
|
||||||
|
|
||||||
# Fetches a summary of the log.
|
# Fetches a summary of the log.
|
||||||
def get_current_log(self, step):
|
def get_current_log(self, step):
|
||||||
|
@ -620,10 +620,10 @@ class ExtensibleTrainer(BaseModel):
|
||||||
return_log[k] = sum(self.log_dict[k]) / len(self.log_dict[k])
|
return_log[k] = sum(self.log_dict[k]) / len(self.log_dict[k])
|
||||||
|
|
||||||
# Some generators can do their own metric logging.
|
# Some generators can do their own metric logging.
|
||||||
if hasattr(self.netG.module, "get_debug_values"):
|
if hasattr(self.netsG.module, "get_debug_values"):
|
||||||
return_log.update(self.netG.module.get_debug_values(step))
|
return_log.update(self.netsG.module.get_debug_values(step))
|
||||||
if hasattr(self.netD.module, "get_debug_values"):
|
if hasattr(self.netsD.module, "get_debug_values"):
|
||||||
return_log.update(self.netD.module.get_debug_values(step))
|
return_log.update(self.netsD.module.get_debug_values(step))
|
||||||
|
|
||||||
return return_log
|
return return_log
|
||||||
|
|
||||||
|
|
9
codes/models/steps/losses/generator_losses.py
Normal file
9
codes/models/steps/losses/generator_losses.py
Normal file
|
@ -0,0 +1,9 @@
|
||||||
|
def create_generator_loss(opt_loss):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class GeneratorLoss:
|
||||||
|
def __init__(self, opt):
|
||||||
|
self.opt = opt
|
||||||
|
|
||||||
|
def get_loss(self, var_L, var_H, var_Gen, extras=None):
|
46
codes/models/steps/srgan_generator_step.py
Normal file
46
codes/models/steps/srgan_generator_step.py
Normal file
|
@ -0,0 +1,46 @@
|
||||||
|
# Defines the expected API for a step
|
||||||
|
class SrGanGeneratorStep:
|
||||||
|
|
||||||
|
def __init__(self, opt_step, opt, netsG, netsD):
|
||||||
|
self.step_opt = opt_step
|
||||||
|
self.opt = opt
|
||||||
|
self.gen = netsG['base']
|
||||||
|
self.disc = netsD['base']
|
||||||
|
for loss in self.step_opt['losses']:
|
||||||
|
|
||||||
|
# G pixel loss
|
||||||
|
if train_opt['pixel_weight'] > 0:
|
||||||
|
l_pix_type = train_opt['pixel_criterion']
|
||||||
|
if l_pix_type == 'l1':
|
||||||
|
self.cri_pix = nn.L1Loss().to(self.device)
|
||||||
|
elif l_pix_type == 'l2':
|
||||||
|
self.cri_pix = nn.MSELoss().to(self.device)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError('Loss type [{:s}] not recognized.'.format(l_pix_type))
|
||||||
|
self.l_pix_w = train_opt['pixel_weight']
|
||||||
|
else:
|
||||||
|
logger.info('Remove pixel loss.')
|
||||||
|
self.cri_pix = None
|
||||||
|
|
||||||
|
|
||||||
|
# Returns all optimizers used in this step.
|
||||||
|
def get_optimizers(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
# Returns optimizers which are opting in for default LR scheduling.
|
||||||
|
def get_optimizers_with_default_scheduler(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
# Returns the names of the networks this step will train. Other networks will be frozen.
|
||||||
|
def get_networks_trained(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
# Performs all forward and backward passes for this step given an input state. All input states are lists or
|
||||||
|
# chunked tensors. Use grad_accum_step to derefernce these steps. Return the state with any variables the step
|
||||||
|
# exports (which may be used by subsequent steps)
|
||||||
|
def do_forward_backward(self, state, grad_accum_step):
|
||||||
|
return state
|
||||||
|
|
||||||
|
# Performs the optimizer step after all gradient accumulation is completed.
|
||||||
|
def do_step(self):
|
||||||
|
pass
|
|
@ -1,6 +1,6 @@
|
||||||
|
|
||||||
|
|
||||||
def create_step(opt_step):
|
def create_step(opt, opt_step, netsG, netsD):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user