forked from mrq/DL-Art-School
commit my own version of vq, with a fix for cosine similarity and support for masking
This commit is contained in:
parent
4ce5c31705
commit
7a10c3fed8
444
codes/models/lucidrains/vq.py
Normal file
444
codes/models/lucidrains/vq.py
Normal file
|
@ -0,0 +1,444 @@
|
|||
import functools
|
||||
|
||||
import torch
|
||||
from torch import nn, einsum
|
||||
import torch.nn.functional as F
|
||||
import torch.distributed as distributed
|
||||
from torch.cuda.amp import autocast
|
||||
|
||||
from einops import rearrange, repeat
|
||||
from contextlib import contextmanager
|
||||
|
||||
|
||||
def par(t, nm):
|
||||
print(f'grad report {nm}: {t}')
|
||||
return t
|
||||
|
||||
def reg(t, nm):
|
||||
l = torch.tensor([0], requires_grad=True, device=t.device, dtype=torch.float)
|
||||
l.register_hook(functools.partial(par, nm=nm))
|
||||
t = t + l
|
||||
return t
|
||||
|
||||
def exists(val):
|
||||
return val is not None
|
||||
|
||||
def default(val, d):
|
||||
return val if exists(val) else d
|
||||
|
||||
def noop(*args, **kwargs):
|
||||
pass
|
||||
|
||||
def l2norm(t):
|
||||
return F.normalize(t, p = 2, dim = -1)
|
||||
|
||||
def log(t, eps = 1e-20):
|
||||
return torch.log(t.clamp(min = eps))
|
||||
|
||||
def gumbel_noise(t):
|
||||
noise = torch.zeros_like(t).uniform_(0, 1)
|
||||
return -log(-log(noise))
|
||||
|
||||
def gumbel_sample(t, temperature = 1., dim = -1):
|
||||
if temperature == 0:
|
||||
return t.argmax(dim = dim)
|
||||
|
||||
return ((t / temperature) + gumbel_noise(t)).argmax(dim = dim)
|
||||
|
||||
def ema_inplace(moving_avg, new, decay):
|
||||
moving_avg.data.mul_(decay).add_(new, alpha = (1 - decay))
|
||||
|
||||
def laplace_smoothing(x, n_categories, eps = 1e-5):
|
||||
return (x + eps) / (x.sum() + n_categories * eps)
|
||||
|
||||
def sample_vectors(samples, num):
|
||||
num_samples, device = samples.shape[0], samples.device
|
||||
|
||||
if num_samples >= num:
|
||||
indices = torch.randperm(num_samples, device = device)[:num]
|
||||
else:
|
||||
indices = torch.randint(0, num_samples, (num,), device = device)
|
||||
|
||||
return samples[indices]
|
||||
|
||||
def kmeans(samples, num_clusters, num_iters = 10, use_cosine_sim = False):
|
||||
dim, dtype, device = samples.shape[-1], samples.dtype, samples.device
|
||||
|
||||
means = sample_vectors(samples, num_clusters)
|
||||
|
||||
for _ in range(num_iters):
|
||||
if use_cosine_sim:
|
||||
dists = samples @ means.t()
|
||||
else:
|
||||
diffs = rearrange(samples, 'n d -> n () d') \
|
||||
- rearrange(means, 'c d -> () c d')
|
||||
dists = -(diffs ** 2).sum(dim = -1)
|
||||
|
||||
buckets = dists.max(dim = -1).indices
|
||||
bins = torch.bincount(buckets, minlength = num_clusters)
|
||||
zero_mask = bins == 0
|
||||
bins_min_clamped = bins.masked_fill(zero_mask, 1)
|
||||
|
||||
new_means = buckets.new_zeros(num_clusters, dim, dtype = dtype)
|
||||
new_means.scatter_add_(0, repeat(buckets, 'n -> n d', d = dim), samples)
|
||||
new_means = new_means / bins_min_clamped[..., None]
|
||||
|
||||
if use_cosine_sim:
|
||||
new_means = l2norm(new_means)
|
||||
|
||||
means = torch.where(zero_mask[..., None], means, new_means)
|
||||
|
||||
return means, bins
|
||||
|
||||
# regularization losses
|
||||
|
||||
def orthgonal_loss_fn(t):
|
||||
# eq (2) from https://arxiv.org/abs/2112.00384
|
||||
n = t.shape[0]
|
||||
normed_codes = l2norm(t)
|
||||
identity = torch.eye(n, device = t.device)
|
||||
cosine_sim = einsum('i d, j d -> i j', normed_codes, normed_codes)
|
||||
return ((cosine_sim - identity) ** 2).sum() / (n ** 2)
|
||||
|
||||
# distance types
|
||||
|
||||
class EuclideanCodebook(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
codebook_size,
|
||||
kmeans_init = False,
|
||||
kmeans_iters = 10,
|
||||
decay = 0.8,
|
||||
eps = 1e-5,
|
||||
threshold_ema_dead_code = 2,
|
||||
use_ddp = False,
|
||||
learnable_codebook = False,
|
||||
sample_codebook_temp = 0
|
||||
):
|
||||
super().__init__()
|
||||
self.decay = decay
|
||||
init_fn = torch.randn if not kmeans_init else torch.zeros
|
||||
embed = init_fn(codebook_size, dim)
|
||||
|
||||
self.codebook_size = codebook_size
|
||||
self.kmeans_iters = kmeans_iters
|
||||
self.eps = eps
|
||||
self.threshold_ema_dead_code = threshold_ema_dead_code
|
||||
self.sample_codebook_temp = sample_codebook_temp
|
||||
|
||||
self.all_reduce_fn = distributed.all_reduce if use_ddp else noop
|
||||
|
||||
self.register_buffer('initted', torch.Tensor([not kmeans_init]))
|
||||
self.register_buffer('cluster_size', torch.zeros(codebook_size))
|
||||
self.register_buffer('embed_avg', embed.clone())
|
||||
|
||||
self.learnable_codebook = learnable_codebook
|
||||
if learnable_codebook:
|
||||
self.embed = nn.Parameter(embed)
|
||||
else:
|
||||
self.register_buffer('embed', embed)
|
||||
|
||||
@torch.jit.ignore
|
||||
def init_embed_(self, data):
|
||||
if self.initted:
|
||||
return
|
||||
|
||||
embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters)
|
||||
self.embed.data.copy_(embed)
|
||||
self.embed_avg.data.copy_(embed.clone())
|
||||
self.cluster_size.data.copy_(cluster_size)
|
||||
self.initted.data.copy_(torch.Tensor([True]))
|
||||
|
||||
def replace(self, samples, mask):
|
||||
modified_codebook = torch.where(
|
||||
mask[..., None],
|
||||
sample_vectors(samples, self.codebook_size),
|
||||
self.embed
|
||||
)
|
||||
self.embed.data.copy_(modified_codebook)
|
||||
|
||||
def expire_codes_(self, batch_samples):
|
||||
if self.threshold_ema_dead_code == 0:
|
||||
return
|
||||
|
||||
expired_codes = self.cluster_size < self.threshold_ema_dead_code
|
||||
if not torch.any(expired_codes):
|
||||
return
|
||||
batch_samples = rearrange(batch_samples, '... d -> (...) d')
|
||||
self.replace(batch_samples, mask = expired_codes)
|
||||
|
||||
@autocast(enabled = False)
|
||||
def forward(self, x, used_codes=[]):
|
||||
shape, dtype = x.shape, x.dtype
|
||||
flatten = rearrange(x, '... d -> (...) d')
|
||||
|
||||
self.init_embed_(flatten)
|
||||
|
||||
embed = self.embed if not self.learnable_codebook else self.embed.detach()
|
||||
embed = embed.t()
|
||||
|
||||
dist = -(
|
||||
flatten.pow(2).sum(1, keepdim=True)
|
||||
- 2 * flatten @ embed
|
||||
+ embed.pow(2).sum(0, keepdim=True)
|
||||
)
|
||||
|
||||
for uc in used_codes:
|
||||
mask = torch.arange(0, self.codebook_size, device=x.device).unsqueeze(0).repeat(x.shape[0],1) == uc.unsqueeze(1)
|
||||
dist[mask] = -torch.inf
|
||||
embed_ind = gumbel_sample(dist, dim = -1, temperature = self.sample_codebook_temp)
|
||||
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
|
||||
embed_ind = embed_ind.view(*shape[:-1])
|
||||
quantize = F.embedding(embed_ind, self.embed)
|
||||
|
||||
# Perform the gumbel trick on the end result (during training)
|
||||
if self.training:
|
||||
quantize = flatten + (quantize - flatten).detach()
|
||||
|
||||
if self.training:
|
||||
cluster_size = embed_onehot.sum(0)
|
||||
self.all_reduce_fn(cluster_size)
|
||||
|
||||
ema_inplace(self.cluster_size, cluster_size, self.decay)
|
||||
|
||||
embed_sum = flatten.t() @ embed_onehot
|
||||
self.all_reduce_fn(embed_sum)
|
||||
|
||||
ema_inplace(self.embed_avg, embed_sum.t(), self.decay)
|
||||
cluster_size = laplace_smoothing(self.cluster_size, self.codebook_size, self.eps) * self.cluster_size.sum()
|
||||
embed_normalized = self.embed_avg / cluster_size.unsqueeze(1)
|
||||
self.embed.data.copy_(embed_normalized)
|
||||
self.expire_codes_(x)
|
||||
|
||||
return quantize, embed_ind
|
||||
|
||||
class CosineSimCodebook(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
codebook_size,
|
||||
kmeans_init = False,
|
||||
kmeans_iters = 10,
|
||||
decay = 0.8,
|
||||
eps = 1e-5,
|
||||
threshold_ema_dead_code = 2,
|
||||
use_ddp = False,
|
||||
learnable_codebook = False,
|
||||
sample_codebook_temp = 0.
|
||||
):
|
||||
super().__init__()
|
||||
self.decay = decay
|
||||
|
||||
if not kmeans_init:
|
||||
embed = l2norm(torch.randn(codebook_size, dim))
|
||||
else:
|
||||
embed = torch.zeros(codebook_size, dim)
|
||||
|
||||
self.codebook_size = codebook_size
|
||||
self.kmeans_iters = kmeans_iters
|
||||
self.eps = eps
|
||||
self.threshold_ema_dead_code = threshold_ema_dead_code
|
||||
self.sample_codebook_temp = sample_codebook_temp
|
||||
|
||||
self.all_reduce_fn = distributed.all_reduce if use_ddp else noop
|
||||
self.register_buffer('initted', torch.Tensor([not kmeans_init]))
|
||||
self.register_buffer('cluster_size', torch.zeros(codebook_size))
|
||||
|
||||
self.learnable_codebook = learnable_codebook
|
||||
if learnable_codebook:
|
||||
self.embed = nn.Parameter(embed)
|
||||
else:
|
||||
self.register_buffer('embed', embed)
|
||||
|
||||
@torch.jit.ignore
|
||||
def init_embed_(self, data):
|
||||
if self.initted:
|
||||
return
|
||||
|
||||
embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters,
|
||||
use_cosine_sim = True)
|
||||
self.embed.data.copy_(embed)
|
||||
self.cluster_size.data.copy_(cluster_size)
|
||||
self.initted.data.copy_(torch.Tensor([True]))
|
||||
|
||||
def replace(self, samples, mask):
|
||||
samples = l2norm(samples)
|
||||
modified_codebook = torch.where(
|
||||
mask[..., None],
|
||||
sample_vectors(samples, self.codebook_size),
|
||||
self.embed
|
||||
)
|
||||
self.embed.data.copy_(modified_codebook)
|
||||
|
||||
def expire_codes_(self, batch_samples):
|
||||
if self.threshold_ema_dead_code == 0:
|
||||
return
|
||||
|
||||
expired_codes = self.cluster_size < self.threshold_ema_dead_code
|
||||
if not torch.any(expired_codes):
|
||||
return
|
||||
batch_samples = rearrange(batch_samples, '... d -> (...) d')
|
||||
self.replace(batch_samples, mask = expired_codes)
|
||||
|
||||
@autocast(enabled = False)
|
||||
def forward(self, x, used_codes=[]):
|
||||
shape, dtype = x.shape, x.dtype
|
||||
flatten = rearrange(x, '... d -> (...) d')
|
||||
flatten = l2norm(flatten)
|
||||
|
||||
self.init_embed_(flatten)
|
||||
embed = self.embed if not self.learnable_codebook else self.embed.detach()
|
||||
embed = l2norm(embed)
|
||||
|
||||
dist = flatten @ embed.t()
|
||||
for uc in used_codes:
|
||||
mask = torch.arange(0, self.codebook_size, device=x.device).unsqueeze(0).repeat(x.shape[0],1) == uc.unsqueeze(1)
|
||||
dist[mask] = -torch.inf
|
||||
embed_ind = gumbel_sample(dist, dim = -1, temperature = self.sample_codebook_temp)
|
||||
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
|
||||
embed_ind = embed_ind.view(*shape[:-1])
|
||||
|
||||
quantize = F.embedding(embed_ind, self.embed)
|
||||
# Perform the gumbel trick on the end result (during training)
|
||||
if self.training:
|
||||
quantize = flatten + (quantize - flatten).detach()
|
||||
|
||||
if self.training:
|
||||
bins = embed_onehot.sum(0)
|
||||
self.all_reduce_fn(bins)
|
||||
|
||||
ema_inplace(self.cluster_size, bins, self.decay)
|
||||
|
||||
zero_mask = (bins == 0)
|
||||
bins = bins.masked_fill(zero_mask, 1.)
|
||||
|
||||
embed_sum = flatten.t() @ embed_onehot
|
||||
self.all_reduce_fn(embed_sum)
|
||||
|
||||
embed_normalized = (embed_sum / bins.unsqueeze(0)).t()
|
||||
embed_normalized = l2norm(embed_normalized)
|
||||
embed_normalized = torch.where(zero_mask[..., None], embed,
|
||||
embed_normalized)
|
||||
ema_inplace(self.embed, embed_normalized, self.decay)
|
||||
self.expire_codes_(x)
|
||||
|
||||
return quantize, embed_ind
|
||||
|
||||
# main class
|
||||
|
||||
class VectorQuantize(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim,
|
||||
codebook_size,
|
||||
n_embed = None,
|
||||
codebook_dim = None,
|
||||
decay = 0.8,
|
||||
eps = 1e-5,
|
||||
kmeans_init = False,
|
||||
kmeans_iters = 10,
|
||||
use_cosine_sim = False,
|
||||
threshold_ema_dead_code = 0,
|
||||
channel_last = True,
|
||||
accept_image_fmap = False,
|
||||
commitment_weight = None,
|
||||
commitment = 1., # deprecate in next version, turn off by default
|
||||
orthogonal_reg_weight = 0.,
|
||||
orthogonal_reg_active_codes_only = False,
|
||||
orthogonal_reg_max_codes = None,
|
||||
sample_codebook_temp = 0.,
|
||||
sync_codebook = False
|
||||
):
|
||||
super().__init__()
|
||||
n_embed = default(n_embed, codebook_size)
|
||||
|
||||
codebook_dim = default(codebook_dim, dim)
|
||||
requires_projection = codebook_dim != dim
|
||||
self.project_in = nn.Linear(dim, codebook_dim) if requires_projection \
|
||||
else nn.Identity()
|
||||
self.project_out = nn.Linear(codebook_dim, dim) if requires_projection \
|
||||
else nn.Identity()
|
||||
|
||||
self.eps = eps
|
||||
self.commitment_weight = default(commitment_weight, commitment)
|
||||
|
||||
has_codebook_orthogonal_loss = orthogonal_reg_weight > 0
|
||||
self.orthogonal_reg_weight = orthogonal_reg_weight
|
||||
self.orthogonal_reg_active_codes_only = orthogonal_reg_active_codes_only
|
||||
self.orthogonal_reg_max_codes = orthogonal_reg_max_codes
|
||||
|
||||
codebook_class = EuclideanCodebook if not use_cosine_sim \
|
||||
else CosineSimCodebook
|
||||
|
||||
self._codebook = codebook_class(
|
||||
dim = codebook_dim,
|
||||
codebook_size = n_embed,
|
||||
kmeans_init = kmeans_init,
|
||||
kmeans_iters = kmeans_iters,
|
||||
decay = decay,
|
||||
eps = eps,
|
||||
threshold_ema_dead_code = threshold_ema_dead_code,
|
||||
use_ddp = sync_codebook,
|
||||
learnable_codebook = has_codebook_orthogonal_loss,
|
||||
sample_codebook_temp = sample_codebook_temp
|
||||
)
|
||||
|
||||
self.codebook_size = codebook_size
|
||||
|
||||
self.accept_image_fmap = accept_image_fmap
|
||||
self.channel_last = channel_last
|
||||
|
||||
@property
|
||||
def codebook(self):
|
||||
return self._codebook.embed
|
||||
|
||||
def forward(self, x, used_codes=None):
|
||||
shape, device, codebook_size = x.shape, x.device, self.codebook_size
|
||||
|
||||
need_transpose = not self.channel_last and not self.accept_image_fmap
|
||||
|
||||
if self.accept_image_fmap:
|
||||
height, width = x.shape[-2:]
|
||||
x = rearrange(x, 'b c h w -> b (h w) c')
|
||||
|
||||
if need_transpose:
|
||||
x = rearrange(x, 'b d n -> b n d')
|
||||
|
||||
x = self.project_in(x)
|
||||
|
||||
quantize, embed_ind = self._codebook(x, used_codes)
|
||||
|
||||
loss = torch.tensor([0.], device = device, requires_grad = self.training)
|
||||
|
||||
if self.training:
|
||||
if self.commitment_weight > 0:
|
||||
commit_loss = F.mse_loss(quantize.detach(), x)
|
||||
loss = loss + commit_loss * self.commitment_weight
|
||||
|
||||
if self.orthogonal_reg_weight > 0:
|
||||
codebook = self.codebook
|
||||
|
||||
if self.orthogonal_reg_active_codes_only:
|
||||
# only calculate orthogonal loss for the activated codes for this batch
|
||||
unique_code_ids = torch.unique(embed_ind)
|
||||
codebook = codebook[unique_code_ids]
|
||||
|
||||
num_codes = codebook.shape[0]
|
||||
if exists(self.orthogonal_reg_max_codes) and num_codes > self.orthogonal_reg_max_codes:
|
||||
rand_ids = torch.randperm(num_codes, device = device)[:self.orthogonal_reg_max_codes]
|
||||
codebook = codebook[rand_ids]
|
||||
|
||||
orthogonal_reg_loss = orthgonal_loss_fn(codebook)
|
||||
loss = loss + orthogonal_reg_loss * self.orthogonal_reg_weight
|
||||
|
||||
quantize = self.project_out(quantize)
|
||||
|
||||
if need_transpose:
|
||||
quantize = rearrange(quantize, 'b n d -> b d n')
|
||||
|
||||
if self.accept_image_fmap:
|
||||
quantize = rearrange(quantize, 'b (h w) c -> b c h w', h = height, w = width)
|
||||
embed_ind = rearrange(embed_ind, 'b (h w) -> b h w', h = height, w = width)
|
||||
|
||||
return quantize, embed_ind, loss
|
Loading…
Reference in New Issue
Block a user