forked from mrq/DL-Art-School
diffuse the cascaded prior for continuous sr model
This commit is contained in:
parent
b0e3be0a17
commit
82bd62019f
|
@ -1,10 +1,10 @@
|
||||||
import itertools
|
import itertools
|
||||||
|
import random
|
||||||
from random import randrange
|
from random import randrange
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
import torchvision.utils
|
|
||||||
|
|
||||||
from models.arch_util import ResBlock, TimestepEmbedSequential, AttentionBlock, build_local_attention_mask
|
from models.arch_util import ResBlock, TimestepEmbedSequential, AttentionBlock, build_local_attention_mask
|
||||||
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
from models.diffusion.nn import timestep_embedding, normalization, zero_module, conv_nd, linear
|
||||||
|
@ -88,7 +88,7 @@ class ConditioningEncoder(nn.Module):
|
||||||
def forward(self, x, resolution):
|
def forward(self, x, resolution):
|
||||||
h = self.init(x) + self.resolution_embedding(resolution).unsqueeze(-1)
|
h = self.init(x) + self.resolution_embedding(resolution).unsqueeze(-1)
|
||||||
h = self.attn(h)
|
h = self.attn(h)
|
||||||
return h[:, :, :6]
|
return h[:, :, :5]
|
||||||
|
|
||||||
|
|
||||||
class TransformerDiffusion(nn.Module):
|
class TransformerDiffusion(nn.Module):
|
||||||
|
@ -130,10 +130,14 @@ class TransformerDiffusion(nn.Module):
|
||||||
nn.SiLU(),
|
nn.SiLU(),
|
||||||
linear(time_embed_dim, model_channels),
|
linear(time_embed_dim, model_channels),
|
||||||
)
|
)
|
||||||
|
self.prior_time_embed = nn.Sequential(
|
||||||
|
linear(time_embed_dim, time_embed_dim),
|
||||||
|
nn.SiLU(),
|
||||||
|
linear(time_embed_dim, model_channels),
|
||||||
|
)
|
||||||
self.resolution_embed = nn.Embedding(resolution_steps, model_channels)
|
self.resolution_embed = nn.Embedding(resolution_steps, model_channels)
|
||||||
self.conditioning_encoder = ConditioningEncoder(in_channels, model_channels, resolution_steps, num_attn_heads=model_channels//64)
|
self.conditioning_encoder = ConditioningEncoder(in_channels, model_channels, resolution_steps, num_attn_heads=model_channels//64)
|
||||||
self.unconditioned_embedding = nn.Parameter(torch.randn(1,model_channels,6))
|
self.unconditioned_embedding = nn.Parameter(torch.randn(1,model_channels,5))
|
||||||
self.unconditioned_prior = nn.Parameter(torch.zeros(1,in_channels,1))
|
|
||||||
|
|
||||||
self.inp_block = conv_nd(1, in_channels+input_vec_dim, model_channels, 3, 1, 1)
|
self.inp_block = conv_nd(1, in_channels+input_vec_dim, model_channels, 3, 1, 1)
|
||||||
self.layers = TimestepEmbedSequential(*[ConcatAttentionBlock(model_channels, contraction_dim, num_heads, dropout) for _ in range(num_layers)])
|
self.layers = TimestepEmbedSequential(*[ConcatAttentionBlock(model_channels, contraction_dim, num_heads, dropout) for _ in range(num_layers)])
|
||||||
|
@ -169,7 +173,7 @@ class TransformerDiffusion(nn.Module):
|
||||||
}
|
}
|
||||||
return groups
|
return groups
|
||||||
|
|
||||||
def input_to_random_resolution_and_window(self, x):
|
def input_to_random_resolution_and_window(self, x, ts, diffuser):
|
||||||
"""
|
"""
|
||||||
This function MUST be applied to the target *before* noising. It returns the reduced, re-scoped target as well
|
This function MUST be applied to the target *before* noising. It returns the reduced, re-scoped target as well
|
||||||
as caches an internal prior for the rescoped target which will be used in training.
|
as caches an internal prior for the rescoped target which will be used in training.
|
||||||
|
@ -185,26 +189,47 @@ class TransformerDiffusion(nn.Module):
|
||||||
s = s[:,:,start:start+self.max_window]
|
s = s[:,:,start:start+self.max_window]
|
||||||
s_prior = F.interpolate(s, scale_factor=.25, mode='nearest')
|
s_prior = F.interpolate(s, scale_factor=.25, mode='nearest')
|
||||||
s_prior = F.interpolate(s_prior, size=(s.shape[-1],), mode='linear', align_corners=True)
|
s_prior = F.interpolate(s_prior, size=(s.shape[-1],), mode='linear', align_corners=True)
|
||||||
self.preprocessed = (s_prior, torch.tensor([resolution] * x.shape[0], dtype=torch.long, device=x.device))
|
|
||||||
|
# Now diffuse the prior randomly between the x timestep and 0.
|
||||||
|
adv = torch.rand_like(ts.float())
|
||||||
|
t_prior = (adv * ts).long()
|
||||||
|
s_prior_diffused = diffuser.q_sample(s_prior, t_prior, torch.randn_like(s_prior))
|
||||||
|
|
||||||
|
self.preprocessed = (s_prior_diffused, t_prior, torch.tensor([resolution] * x.shape[0], dtype=torch.long, device=x.device))
|
||||||
return s
|
return s
|
||||||
|
|
||||||
def forward(self, x, timesteps, x_prior=None, resolution=None, conditioning_input=None, conditioning_free=False):
|
def forward(self, x, timesteps, prior_timesteps=None, x_prior=None, resolution=None, conditioning_input=None, conditioning_free=False):
|
||||||
|
"""
|
||||||
|
Predicts the previous diffusion timestep of x, given a partially diffused low-resolution prior and a conditioning
|
||||||
|
input.
|
||||||
|
|
||||||
|
All parameters are optional because during training, input_to_random_resolution_and_window is used by a training
|
||||||
|
harness to preformat the inputs and fill in the parameters as state variables.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
x: Prediction prior.
|
||||||
|
timesteps: Number of timesteps x has been diffused for.
|
||||||
|
prior_timesteps: Number of timesteps x_prior has been diffused for. Must be <= timesteps for each batch element.
|
||||||
|
x_prior: A low-resolution prior that guides the model.
|
||||||
|
resolution: Integer indicating the operating resolution level. '0' is the highest resolution.
|
||||||
|
conditioning_input: A semi-related (un-aligned) conditioning input which is used to guide diffusion. Similar to a class input, but hooked to a learned conditioning encoder.
|
||||||
|
conditioning_free: Whether or not to ignore the conditioning input.
|
||||||
|
"""
|
||||||
conditioning_input = x_prior if conditioning_input is None else conditioning_input
|
conditioning_input = x_prior if conditioning_input is None else conditioning_input
|
||||||
|
|
||||||
h = x
|
|
||||||
if resolution is None:
|
if resolution is None:
|
||||||
# This is assumed to be training.
|
# This is assumed to be training.
|
||||||
assert self.preprocessed is not None, 'Preprocessing function not called.'
|
assert self.preprocessed is not None, 'Preprocessing function not called.'
|
||||||
assert x_prior is None, 'Provided prior will not be used, instead preprocessing output will be used.'
|
assert x_prior is None, 'Provided prior will not be used, instead preprocessing output will be used.'
|
||||||
h_sub, resolution = self.preprocessed
|
x_prior, prior_timesteps, resolution = self.preprocessed
|
||||||
self.preprocessed = None
|
self.preprocessed = None
|
||||||
else:
|
else:
|
||||||
assert h.shape[-1] > x_prior.shape[-1] * 3.9, f'{h.shape} {x_prior.shape}'
|
assert x.shape[-1] > x_prior.shape[-1] * 3.9, f'{x.shape} {x_prior.shape}'
|
||||||
h_sub = F.interpolate(x_prior, size=(x.shape[-1],), mode='linear', align_corners=True)
|
x_prior = F.interpolate(x_prior, size=(x.shape[-1],), mode='linear', align_corners=True)
|
||||||
|
assert torch.all(timesteps - prior_timesteps > 0), f'Prior timesteps should always be lower (more resolved) than input timesteps. {timesteps}, {prior_timesteps}'
|
||||||
|
|
||||||
if conditioning_free:
|
if conditioning_free:
|
||||||
h_sub = self.unconditioned_prior.repeat(x.shape[0], 1, x.shape[-1])
|
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, 1)
|
||||||
code_emb = self.unconditioned_embedding.repeat(x.shape[0], 1, x.shape[-1])
|
|
||||||
else:
|
else:
|
||||||
MIN_COND_LEN = 200
|
MIN_COND_LEN = 200
|
||||||
MAX_COND_LEN = 1200
|
MAX_COND_LEN = 1200
|
||||||
|
@ -217,17 +242,17 @@ class TransformerDiffusion(nn.Module):
|
||||||
|
|
||||||
# Mask out the conditioning input and x_prior inputs for whole batch elements, implementing something similar to classifier-free guidance.
|
# Mask out the conditioning input and x_prior inputs for whole batch elements, implementing something similar to classifier-free guidance.
|
||||||
if self.training and self.unconditioned_percentage > 0:
|
if self.training and self.unconditioned_percentage > 0:
|
||||||
unconditioned_batches = torch.rand((h.shape[0], 1, 1),
|
unconditioned_batches = torch.rand((x.shape[0], 1, 1),
|
||||||
device=h.device) < self.unconditioned_percentage
|
device=x.device) < self.unconditioned_percentage
|
||||||
h_sub = torch.where(unconditioned_batches, self.unconditioned_prior.repeat(h_sub.shape[0], 1, h_sub.shape[-1]), h_sub)
|
|
||||||
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(code_emb.shape[0], 1, 1), code_emb)
|
code_emb = torch.where(unconditioned_batches, self.unconditioned_embedding.repeat(code_emb.shape[0], 1, 1), code_emb)
|
||||||
|
|
||||||
with torch.autocast(x.device.type, enabled=self.enable_fp16):
|
with torch.autocast(x.device.type, enabled=self.enable_fp16):
|
||||||
time_emb = self.time_embed(timestep_embedding(timesteps, self.time_embed_dim))
|
time_emb = self.time_embed(timestep_embedding(timesteps, self.time_embed_dim))
|
||||||
|
prior_time_emb = self.prior_time_embed(timestep_embedding(prior_timesteps, self.time_embed_dim))
|
||||||
res_emb = self.resolution_embed(resolution)
|
res_emb = self.resolution_embed(resolution)
|
||||||
blk_emb = torch.cat([time_emb.unsqueeze(-1), res_emb.unsqueeze(-1), code_emb], dim=-1)
|
blk_emb = torch.cat([time_emb.unsqueeze(-1), prior_time_emb.unsqueeze(-1), res_emb.unsqueeze(-1), code_emb], dim=-1)
|
||||||
|
|
||||||
h = torch.cat([h, h_sub], dim=1)
|
h = torch.cat([x, x_prior], dim=1)
|
||||||
h = self.inp_block(h)
|
h = self.inp_block(h)
|
||||||
for layer in self.layers:
|
for layer in self.layers:
|
||||||
h = checkpoint(layer, h, blk_emb)
|
h = checkpoint(layer, h, blk_emb)
|
||||||
|
@ -236,7 +261,7 @@ class TransformerDiffusion(nn.Module):
|
||||||
out = self.out(h)
|
out = self.out(h)
|
||||||
|
|
||||||
# Defensively involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
|
# Defensively involve probabilistic or possibly unused parameters in loss so we don't get DDP errors.
|
||||||
unused_params = [self.unconditioned_prior, self.unconditioned_embedding]
|
unused_params = [self.unconditioned_embedding]
|
||||||
extraneous_addition = 0
|
extraneous_addition = 0
|
||||||
for p in unused_params:
|
for p in unused_params:
|
||||||
extraneous_addition = extraneous_addition + p.mean()
|
extraneous_addition = extraneous_addition + p.mean()
|
||||||
|
@ -251,6 +276,12 @@ def register_transformer_diffusion13(opt_net, opt):
|
||||||
|
|
||||||
|
|
||||||
def test_tfd():
|
def test_tfd():
|
||||||
|
from models.diffusion.respace import SpacedDiffusion
|
||||||
|
from models.diffusion.respace import space_timesteps
|
||||||
|
from models.diffusion.gaussian_diffusion import get_named_beta_schedule
|
||||||
|
diffuser = SpacedDiffusion(use_timesteps=space_timesteps(4000, [4000]), model_mean_type='epsilon',
|
||||||
|
model_var_type='learned_range', loss_type='mse',
|
||||||
|
betas=get_named_beta_schedule('linear', 4000))
|
||||||
clip = torch.randn(2,256,10336)
|
clip = torch.randn(2,256,10336)
|
||||||
cond = torch.randn(2,256,10336)
|
cond = torch.randn(2,256,10336)
|
||||||
ts = torch.LongTensor([600, 600])
|
ts = torch.LongTensor([600, 600])
|
||||||
|
@ -258,8 +289,8 @@ def test_tfd():
|
||||||
num_heads=512//64, input_vec_dim=256, num_layers=12, dropout=.1,
|
num_heads=512//64, input_vec_dim=256, num_layers=12, dropout=.1,
|
||||||
unconditioned_percentage=.6)
|
unconditioned_percentage=.6)
|
||||||
for k in range(100):
|
for k in range(100):
|
||||||
x = model.input_to_random_resolution_and_window(clip, x_prior=clip)
|
x = model.input_to_random_resolution_and_window(clip, ts, diffuser)
|
||||||
model(x, ts, clip)
|
model(x, ts, conditioning_input=cond)
|
||||||
|
|
||||||
|
|
||||||
def remove_conditioning(sd_path):
|
def remove_conditioning(sd_path):
|
||||||
|
|
|
@ -89,10 +89,10 @@ class GaussianDiffusionInjector(Injector):
|
||||||
sampler = self.schedule_sampler
|
sampler = self.schedule_sampler
|
||||||
self.deterministic_sampler.reset() # Keep this reset whenever it is not being used, so it is ready to use automatically.
|
self.deterministic_sampler.reset() # Keep this reset whenever it is not being used, so it is ready to use automatically.
|
||||||
model_inputs = {k: state[v] if isinstance(v, str) else v for k, v in self.model_input_keys.items()}
|
model_inputs = {k: state[v] if isinstance(v, str) else v for k, v in self.model_input_keys.items()}
|
||||||
if self.preprocess_fn is not None:
|
|
||||||
hq = getattr(gen.module, self.preprocess_fn)(hq)
|
|
||||||
|
|
||||||
t, weights = sampler.sample(hq.shape[0], hq.device)
|
t, weights = sampler.sample(hq.shape[0], hq.device)
|
||||||
|
|
||||||
|
if self.preprocess_fn is not None:
|
||||||
|
hq = getattr(gen.module, self.preprocess_fn)(hq, t, self.diffusion)
|
||||||
if self.causal_mode:
|
if self.causal_mode:
|
||||||
cs, ce = self.causal_slope_range
|
cs, ce = self.causal_slope_range
|
||||||
slope = random.random() * (ce-cs) + cs
|
slope = random.random() * (ce-cs) + cs
|
||||||
|
|
Loading…
Reference in New Issue
Block a user