forked from mrq/DL-Art-School
add deform_conv_cuda_kernel.cu
This commit is contained in:
parent
dfdaaef492
commit
866a858e59
866
codes/models/archs/dcn/src/deform_conv_cuda_kernel.cu
Normal file
866
codes/models/archs/dcn/src/deform_conv_cuda_kernel.cu
Normal file
|
@ -0,0 +1,866 @@
|
|||
/*!
|
||||
******************* BEGIN Caffe Copyright Notice and Disclaimer ****************
|
||||
*
|
||||
* COPYRIGHT
|
||||
*
|
||||
* All contributions by the University of California:
|
||||
* Copyright (c) 2014-2017 The Regents of the University of California (Regents)
|
||||
* All rights reserved.
|
||||
*
|
||||
* All other contributions:
|
||||
* Copyright (c) 2014-2017, the respective contributors
|
||||
* All rights reserved.
|
||||
*
|
||||
* Caffe uses a shared copyright model: each contributor holds copyright over
|
||||
* their contributions to Caffe. The project versioning records all such
|
||||
* contribution and copyright details. If a contributor wants to further mark
|
||||
* their specific copyright on a particular contribution, they should indicate
|
||||
* their copyright solely in the commit message of the change when it is
|
||||
* committed.
|
||||
*
|
||||
* LICENSE
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright notice, this
|
||||
* list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
||||
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
||||
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
||||
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
||||
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
* CONTRIBUTION AGREEMENT
|
||||
*
|
||||
* By contributing to the BVLC/caffe repository through pull-request, comment,
|
||||
* or otherwise, the contributor releases their content to the
|
||||
* license and copyright terms herein.
|
||||
*
|
||||
***************** END Caffe Copyright Notice and Disclaimer ********************
|
||||
*
|
||||
* Copyright (c) 2018 Microsoft
|
||||
* Licensed under The MIT License [see LICENSE for details]
|
||||
* \file modulated_deformable_im2col.cuh
|
||||
* \brief Function definitions of converting an image to
|
||||
* column matrix based on kernel, padding, dilation, and offset.
|
||||
* These functions are mainly used in deformable convolution operators.
|
||||
* \ref: https://arxiv.org/abs/1703.06211
|
||||
* \author Yuwen Xiong, Haozhi Qi, Jifeng Dai, Xizhou Zhu, Han Hu, Dazhi Cheng
|
||||
*/
|
||||
|
||||
// modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/blob/mmdetection/mmdet/ops/dcn/src/deform_conv_cuda_kernel.cu
|
||||
|
||||
#include <ATen/ATen.h>
|
||||
#include <THC/THCAtomics.cuh>
|
||||
#include <stdio.h>
|
||||
#include <math.h>
|
||||
#include <float.h>
|
||||
|
||||
using namespace at;
|
||||
|
||||
#define CUDA_KERNEL_LOOP(i, n) \
|
||||
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
|
||||
i += blockDim.x * gridDim.x)
|
||||
|
||||
const int CUDA_NUM_THREADS = 1024;
|
||||
const int kMaxGridNum = 65535;
|
||||
|
||||
inline int GET_BLOCKS(const int N)
|
||||
{
|
||||
return std::min(kMaxGridNum, (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS);
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__device__ scalar_t deformable_im2col_bilinear(const scalar_t *bottom_data, const int data_width,
|
||||
const int height, const int width, scalar_t h, scalar_t w)
|
||||
{
|
||||
|
||||
int h_low = floor(h);
|
||||
int w_low = floor(w);
|
||||
int h_high = h_low + 1;
|
||||
int w_high = w_low + 1;
|
||||
|
||||
scalar_t lh = h - h_low;
|
||||
scalar_t lw = w - w_low;
|
||||
scalar_t hh = 1 - lh, hw = 1 - lw;
|
||||
|
||||
scalar_t v1 = 0;
|
||||
if (h_low >= 0 && w_low >= 0)
|
||||
v1 = bottom_data[h_low * data_width + w_low];
|
||||
scalar_t v2 = 0;
|
||||
if (h_low >= 0 && w_high <= width - 1)
|
||||
v2 = bottom_data[h_low * data_width + w_high];
|
||||
scalar_t v3 = 0;
|
||||
if (h_high <= height - 1 && w_low >= 0)
|
||||
v3 = bottom_data[h_high * data_width + w_low];
|
||||
scalar_t v4 = 0;
|
||||
if (h_high <= height - 1 && w_high <= width - 1)
|
||||
v4 = bottom_data[h_high * data_width + w_high];
|
||||
|
||||
scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
|
||||
|
||||
scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
|
||||
return val;
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__device__ scalar_t get_gradient_weight(scalar_t argmax_h, scalar_t argmax_w,
|
||||
const int h, const int w, const int height, const int width)
|
||||
{
|
||||
|
||||
if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 || argmax_w >= width)
|
||||
{
|
||||
//empty
|
||||
return 0;
|
||||
}
|
||||
|
||||
int argmax_h_low = floor(argmax_h);
|
||||
int argmax_w_low = floor(argmax_w);
|
||||
int argmax_h_high = argmax_h_low + 1;
|
||||
int argmax_w_high = argmax_w_low + 1;
|
||||
|
||||
scalar_t weight = 0;
|
||||
if (h == argmax_h_low && w == argmax_w_low)
|
||||
weight = (h + 1 - argmax_h) * (w + 1 - argmax_w);
|
||||
if (h == argmax_h_low && w == argmax_w_high)
|
||||
weight = (h + 1 - argmax_h) * (argmax_w + 1 - w);
|
||||
if (h == argmax_h_high && w == argmax_w_low)
|
||||
weight = (argmax_h + 1 - h) * (w + 1 - argmax_w);
|
||||
if (h == argmax_h_high && w == argmax_w_high)
|
||||
weight = (argmax_h + 1 - h) * (argmax_w + 1 - w);
|
||||
return weight;
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__device__ scalar_t get_coordinate_weight(scalar_t argmax_h, scalar_t argmax_w,
|
||||
const int height, const int width, const scalar_t *im_data,
|
||||
const int data_width, const int bp_dir)
|
||||
{
|
||||
|
||||
if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 || argmax_w >= width)
|
||||
{
|
||||
//empty
|
||||
return 0;
|
||||
}
|
||||
|
||||
int argmax_h_low = floor(argmax_h);
|
||||
int argmax_w_low = floor(argmax_w);
|
||||
int argmax_h_high = argmax_h_low + 1;
|
||||
int argmax_w_high = argmax_w_low + 1;
|
||||
|
||||
scalar_t weight = 0;
|
||||
|
||||
if (bp_dir == 0)
|
||||
{
|
||||
if (argmax_h_low >= 0 && argmax_w_low >= 0)
|
||||
weight += -1 * (argmax_w_low + 1 - argmax_w) * im_data[argmax_h_low * data_width + argmax_w_low];
|
||||
if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
|
||||
weight += -1 * (argmax_w - argmax_w_low) * im_data[argmax_h_low * data_width + argmax_w_high];
|
||||
if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
|
||||
weight += (argmax_w_low + 1 - argmax_w) * im_data[argmax_h_high * data_width + argmax_w_low];
|
||||
if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
|
||||
weight += (argmax_w - argmax_w_low) * im_data[argmax_h_high * data_width + argmax_w_high];
|
||||
}
|
||||
else if (bp_dir == 1)
|
||||
{
|
||||
if (argmax_h_low >= 0 && argmax_w_low >= 0)
|
||||
weight += -1 * (argmax_h_low + 1 - argmax_h) * im_data[argmax_h_low * data_width + argmax_w_low];
|
||||
if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
|
||||
weight += (argmax_h_low + 1 - argmax_h) * im_data[argmax_h_low * data_width + argmax_w_high];
|
||||
if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
|
||||
weight += -1 * (argmax_h - argmax_h_low) * im_data[argmax_h_high * data_width + argmax_w_low];
|
||||
if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
|
||||
weight += (argmax_h - argmax_h_low) * im_data[argmax_h_high * data_width + argmax_w_high];
|
||||
}
|
||||
|
||||
return weight;
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__global__ void deformable_im2col_gpu_kernel(const int n, const scalar_t *data_im, const scalar_t *data_offset,
|
||||
const int height, const int width, const int kernel_h, const int kernel_w,
|
||||
const int pad_h, const int pad_w, const int stride_h, const int stride_w,
|
||||
const int dilation_h, const int dilation_w, const int channel_per_deformable_group,
|
||||
const int batch_size, const int num_channels, const int deformable_group,
|
||||
const int height_col, const int width_col,
|
||||
scalar_t *data_col)
|
||||
{
|
||||
CUDA_KERNEL_LOOP(index, n)
|
||||
{
|
||||
// index index of output matrix
|
||||
const int w_col = index % width_col;
|
||||
const int h_col = (index / width_col) % height_col;
|
||||
const int b_col = (index / width_col / height_col) % batch_size;
|
||||
const int c_im = (index / width_col / height_col) / batch_size;
|
||||
const int c_col = c_im * kernel_h * kernel_w;
|
||||
|
||||
// compute deformable group index
|
||||
const int deformable_group_index = c_im / channel_per_deformable_group;
|
||||
|
||||
const int h_in = h_col * stride_h - pad_h;
|
||||
const int w_in = w_col * stride_w - pad_w;
|
||||
scalar_t *data_col_ptr = data_col + ((c_col * batch_size + b_col) * height_col + h_col) * width_col + w_col;
|
||||
//const scalar_t* data_im_ptr = data_im + ((b_col * num_channels + c_im) * height + h_in) * width + w_in;
|
||||
const scalar_t *data_im_ptr = data_im + (b_col * num_channels + c_im) * height * width;
|
||||
const scalar_t *data_offset_ptr = data_offset + (b_col * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col;
|
||||
|
||||
for (int i = 0; i < kernel_h; ++i)
|
||||
{
|
||||
for (int j = 0; j < kernel_w; ++j)
|
||||
{
|
||||
const int data_offset_h_ptr = ((2 * (i * kernel_w + j)) * height_col + h_col) * width_col + w_col;
|
||||
const int data_offset_w_ptr = ((2 * (i * kernel_w + j) + 1) * height_col + h_col) * width_col + w_col;
|
||||
const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
|
||||
const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
|
||||
scalar_t val = static_cast<scalar_t>(0);
|
||||
const scalar_t h_im = h_in + i * dilation_h + offset_h;
|
||||
const scalar_t w_im = w_in + j * dilation_w + offset_w;
|
||||
if (h_im > -1 && w_im > -1 && h_im < height && w_im < width)
|
||||
{
|
||||
//const scalar_t map_h = i * dilation_h + offset_h;
|
||||
//const scalar_t map_w = j * dilation_w + offset_w;
|
||||
//const int cur_height = height - h_in;
|
||||
//const int cur_width = width - w_in;
|
||||
//val = deformable_im2col_bilinear(data_im_ptr, width, cur_height, cur_width, map_h, map_w);
|
||||
val = deformable_im2col_bilinear(data_im_ptr, width, height, width, h_im, w_im);
|
||||
}
|
||||
*data_col_ptr = val;
|
||||
data_col_ptr += batch_size * height_col * width_col;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void deformable_im2col(
|
||||
const at::Tensor data_im, const at::Tensor data_offset, const int channels,
|
||||
const int height, const int width, const int ksize_h, const int ksize_w,
|
||||
const int pad_h, const int pad_w, const int stride_h, const int stride_w,
|
||||
const int dilation_h, const int dilation_w, const int parallel_imgs,
|
||||
const int deformable_group, at::Tensor data_col)
|
||||
{
|
||||
// num_axes should be smaller than block size
|
||||
// todo: check parallel_imgs is correctly passed in
|
||||
int height_col = (height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1;
|
||||
int width_col = (width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1;
|
||||
int num_kernels = channels * height_col * width_col * parallel_imgs;
|
||||
int channel_per_deformable_group = channels / deformable_group;
|
||||
|
||||
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
|
||||
data_im.scalar_type(), "deformable_im2col_gpu", ([&] {
|
||||
const scalar_t *data_im_ = data_im.data<scalar_t>();
|
||||
const scalar_t *data_offset_ = data_offset.data<scalar_t>();
|
||||
scalar_t *data_col_ = data_col.data<scalar_t>();
|
||||
|
||||
deformable_im2col_gpu_kernel<<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS>>>(
|
||||
num_kernels, data_im_, data_offset_, height, width, ksize_h, ksize_w,
|
||||
pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w,
|
||||
channel_per_deformable_group, parallel_imgs, channels, deformable_group,
|
||||
height_col, width_col, data_col_);
|
||||
}));
|
||||
|
||||
cudaError_t err = cudaGetLastError();
|
||||
if (err != cudaSuccess)
|
||||
{
|
||||
printf("error in deformable_im2col: %s\n", cudaGetErrorString(err));
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__global__ void deformable_col2im_gpu_kernel(
|
||||
const int n, const scalar_t *data_col, const scalar_t *data_offset,
|
||||
const int channels, const int height, const int width,
|
||||
const int kernel_h, const int kernel_w,
|
||||
const int pad_h, const int pad_w,
|
||||
const int stride_h, const int stride_w,
|
||||
const int dilation_h, const int dilation_w,
|
||||
const int channel_per_deformable_group,
|
||||
const int batch_size, const int deformable_group,
|
||||
const int height_col, const int width_col,
|
||||
scalar_t *grad_im)
|
||||
{
|
||||
CUDA_KERNEL_LOOP(index, n)
|
||||
{
|
||||
const int j = (index / width_col / height_col / batch_size) % kernel_w;
|
||||
const int i = (index / width_col / height_col / batch_size / kernel_w) % kernel_h;
|
||||
const int c = index / width_col / height_col / batch_size / kernel_w / kernel_h;
|
||||
// compute the start and end of the output
|
||||
|
||||
const int deformable_group_index = c / channel_per_deformable_group;
|
||||
|
||||
int w_out = index % width_col;
|
||||
int h_out = (index / width_col) % height_col;
|
||||
int b = (index / width_col / height_col) % batch_size;
|
||||
int w_in = w_out * stride_w - pad_w;
|
||||
int h_in = h_out * stride_h - pad_h;
|
||||
|
||||
const scalar_t *data_offset_ptr = data_offset + (b * deformable_group + deformable_group_index) *
|
||||
2 * kernel_h * kernel_w * height_col * width_col;
|
||||
const int data_offset_h_ptr = ((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out;
|
||||
const int data_offset_w_ptr = ((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out;
|
||||
const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
|
||||
const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
|
||||
const scalar_t cur_inv_h_data = h_in + i * dilation_h + offset_h;
|
||||
const scalar_t cur_inv_w_data = w_in + j * dilation_w + offset_w;
|
||||
|
||||
const scalar_t cur_top_grad = data_col[index];
|
||||
const int cur_h = (int)cur_inv_h_data;
|
||||
const int cur_w = (int)cur_inv_w_data;
|
||||
for (int dy = -2; dy <= 2; dy++)
|
||||
{
|
||||
for (int dx = -2; dx <= 2; dx++)
|
||||
{
|
||||
if (cur_h + dy >= 0 && cur_h + dy < height &&
|
||||
cur_w + dx >= 0 && cur_w + dx < width &&
|
||||
abs(cur_inv_h_data - (cur_h + dy)) < 1 &&
|
||||
abs(cur_inv_w_data - (cur_w + dx)) < 1)
|
||||
{
|
||||
int cur_bottom_grad_pos = ((b * channels + c) * height + cur_h + dy) * width + cur_w + dx;
|
||||
scalar_t weight = get_gradient_weight(cur_inv_h_data, cur_inv_w_data, cur_h + dy, cur_w + dx, height, width);
|
||||
atomicAdd(grad_im + cur_bottom_grad_pos, weight * cur_top_grad);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void deformable_col2im(
|
||||
const at::Tensor data_col, const at::Tensor data_offset, const int channels,
|
||||
const int height, const int width, const int ksize_h,
|
||||
const int ksize_w, const int pad_h, const int pad_w,
|
||||
const int stride_h, const int stride_w,
|
||||
const int dilation_h, const int dilation_w,
|
||||
const int parallel_imgs, const int deformable_group,
|
||||
at::Tensor grad_im)
|
||||
{
|
||||
|
||||
// todo: make sure parallel_imgs is passed in correctly
|
||||
int height_col = (height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1;
|
||||
int width_col = (width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1;
|
||||
int num_kernels = channels * ksize_h * ksize_w * height_col * width_col * parallel_imgs;
|
||||
int channel_per_deformable_group = channels / deformable_group;
|
||||
|
||||
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
|
||||
data_col.scalar_type(), "deformable_col2im_gpu", ([&] {
|
||||
const scalar_t *data_col_ = data_col.data<scalar_t>();
|
||||
const scalar_t *data_offset_ = data_offset.data<scalar_t>();
|
||||
scalar_t *grad_im_ = grad_im.data<scalar_t>();
|
||||
|
||||
deformable_col2im_gpu_kernel<<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS>>>(
|
||||
num_kernels, data_col_, data_offset_, channels, height, width, ksize_h,
|
||||
ksize_w, pad_h, pad_w, stride_h, stride_w,
|
||||
dilation_h, dilation_w, channel_per_deformable_group,
|
||||
parallel_imgs, deformable_group, height_col, width_col, grad_im_);
|
||||
}));
|
||||
|
||||
cudaError_t err = cudaGetLastError();
|
||||
if (err != cudaSuccess)
|
||||
{
|
||||
printf("error in deformable_col2im: %s\n", cudaGetErrorString(err));
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__global__ void deformable_col2im_coord_gpu_kernel(const int n, const scalar_t *data_col,
|
||||
const scalar_t *data_im, const scalar_t *data_offset,
|
||||
const int channels, const int height, const int width,
|
||||
const int kernel_h, const int kernel_w,
|
||||
const int pad_h, const int pad_w,
|
||||
const int stride_h, const int stride_w,
|
||||
const int dilation_h, const int dilation_w,
|
||||
const int channel_per_deformable_group,
|
||||
const int batch_size, const int offset_channels, const int deformable_group,
|
||||
const int height_col, const int width_col, scalar_t *grad_offset)
|
||||
{
|
||||
CUDA_KERNEL_LOOP(index, n)
|
||||
{
|
||||
scalar_t val = 0;
|
||||
int w = index % width_col;
|
||||
int h = (index / width_col) % height_col;
|
||||
int c = (index / width_col / height_col) % offset_channels;
|
||||
int b = (index / width_col / height_col) / offset_channels;
|
||||
// compute the start and end of the output
|
||||
|
||||
const int deformable_group_index = c / (2 * kernel_h * kernel_w);
|
||||
const int col_step = kernel_h * kernel_w;
|
||||
int cnt = 0;
|
||||
const scalar_t *data_col_ptr = data_col + deformable_group_index * channel_per_deformable_group *
|
||||
batch_size * width_col * height_col;
|
||||
const scalar_t *data_im_ptr = data_im + (b * deformable_group + deformable_group_index) *
|
||||
channel_per_deformable_group / kernel_h / kernel_w * height * width;
|
||||
const scalar_t *data_offset_ptr = data_offset + (b * deformable_group + deformable_group_index) * 2 *
|
||||
kernel_h * kernel_w * height_col * width_col;
|
||||
|
||||
const int offset_c = c - deformable_group_index * 2 * kernel_h * kernel_w;
|
||||
|
||||
for (int col_c = (offset_c / 2); col_c < channel_per_deformable_group; col_c += col_step)
|
||||
{
|
||||
const int col_pos = (((col_c * batch_size + b) * height_col) + h) * width_col + w;
|
||||
const int bp_dir = offset_c % 2;
|
||||
|
||||
int j = (col_pos / width_col / height_col / batch_size) % kernel_w;
|
||||
int i = (col_pos / width_col / height_col / batch_size / kernel_w) % kernel_h;
|
||||
int w_out = col_pos % width_col;
|
||||
int h_out = (col_pos / width_col) % height_col;
|
||||
int w_in = w_out * stride_w - pad_w;
|
||||
int h_in = h_out * stride_h - pad_h;
|
||||
const int data_offset_h_ptr = (((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out);
|
||||
const int data_offset_w_ptr = (((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out);
|
||||
const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
|
||||
const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
|
||||
scalar_t inv_h = h_in + i * dilation_h + offset_h;
|
||||
scalar_t inv_w = w_in + j * dilation_w + offset_w;
|
||||
if (inv_h <= -1 || inv_w <= -1 || inv_h >= height || inv_w >= width)
|
||||
{
|
||||
inv_h = inv_w = -2;
|
||||
}
|
||||
const scalar_t weight = get_coordinate_weight(
|
||||
inv_h, inv_w,
|
||||
height, width, data_im_ptr + cnt * height * width, width, bp_dir);
|
||||
val += weight * data_col_ptr[col_pos];
|
||||
cnt += 1;
|
||||
}
|
||||
|
||||
grad_offset[index] = val;
|
||||
}
|
||||
}
|
||||
|
||||
void deformable_col2im_coord(
|
||||
const at::Tensor data_col, const at::Tensor data_im, const at::Tensor data_offset,
|
||||
const int channels, const int height, const int width, const int ksize_h,
|
||||
const int ksize_w, const int pad_h, const int pad_w, const int stride_h,
|
||||
const int stride_w, const int dilation_h, const int dilation_w,
|
||||
const int parallel_imgs, const int deformable_group, at::Tensor grad_offset)
|
||||
{
|
||||
|
||||
int height_col = (height + 2 * pad_h - (dilation_h * (ksize_h - 1) + 1)) / stride_h + 1;
|
||||
int width_col = (width + 2 * pad_w - (dilation_w * (ksize_w - 1) + 1)) / stride_w + 1;
|
||||
int num_kernels = height_col * width_col * 2 * ksize_h * ksize_w * deformable_group * parallel_imgs;
|
||||
int channel_per_deformable_group = channels * ksize_h * ksize_w / deformable_group;
|
||||
|
||||
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
|
||||
data_col.scalar_type(), "deformable_col2im_coord_gpu", ([&] {
|
||||
const scalar_t *data_col_ = data_col.data<scalar_t>();
|
||||
const scalar_t *data_im_ = data_im.data<scalar_t>();
|
||||
const scalar_t *data_offset_ = data_offset.data<scalar_t>();
|
||||
scalar_t *grad_offset_ = grad_offset.data<scalar_t>();
|
||||
|
||||
deformable_col2im_coord_gpu_kernel<<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS>>>(
|
||||
num_kernels, data_col_, data_im_, data_offset_, channels, height, width,
|
||||
ksize_h, ksize_w, pad_h, pad_w, stride_h, stride_w,
|
||||
dilation_h, dilation_w, channel_per_deformable_group,
|
||||
parallel_imgs, 2 * ksize_h * ksize_w * deformable_group, deformable_group,
|
||||
height_col, width_col, grad_offset_);
|
||||
}));
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__device__ scalar_t dmcn_im2col_bilinear(const scalar_t *bottom_data, const int data_width,
|
||||
const int height, const int width, scalar_t h, scalar_t w)
|
||||
{
|
||||
int h_low = floor(h);
|
||||
int w_low = floor(w);
|
||||
int h_high = h_low + 1;
|
||||
int w_high = w_low + 1;
|
||||
|
||||
scalar_t lh = h - h_low;
|
||||
scalar_t lw = w - w_low;
|
||||
scalar_t hh = 1 - lh, hw = 1 - lw;
|
||||
|
||||
scalar_t v1 = 0;
|
||||
if (h_low >= 0 && w_low >= 0)
|
||||
v1 = bottom_data[h_low * data_width + w_low];
|
||||
scalar_t v2 = 0;
|
||||
if (h_low >= 0 && w_high <= width - 1)
|
||||
v2 = bottom_data[h_low * data_width + w_high];
|
||||
scalar_t v3 = 0;
|
||||
if (h_high <= height - 1 && w_low >= 0)
|
||||
v3 = bottom_data[h_high * data_width + w_low];
|
||||
scalar_t v4 = 0;
|
||||
if (h_high <= height - 1 && w_high <= width - 1)
|
||||
v4 = bottom_data[h_high * data_width + w_high];
|
||||
|
||||
scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
|
||||
|
||||
scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
|
||||
return val;
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__device__ scalar_t dmcn_get_gradient_weight(scalar_t argmax_h, scalar_t argmax_w,
|
||||
const int h, const int w, const int height, const int width)
|
||||
{
|
||||
if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 || argmax_w >= width)
|
||||
{
|
||||
//empty
|
||||
return 0;
|
||||
}
|
||||
|
||||
int argmax_h_low = floor(argmax_h);
|
||||
int argmax_w_low = floor(argmax_w);
|
||||
int argmax_h_high = argmax_h_low + 1;
|
||||
int argmax_w_high = argmax_w_low + 1;
|
||||
|
||||
scalar_t weight = 0;
|
||||
if (h == argmax_h_low && w == argmax_w_low)
|
||||
weight = (h + 1 - argmax_h) * (w + 1 - argmax_w);
|
||||
if (h == argmax_h_low && w == argmax_w_high)
|
||||
weight = (h + 1 - argmax_h) * (argmax_w + 1 - w);
|
||||
if (h == argmax_h_high && w == argmax_w_low)
|
||||
weight = (argmax_h + 1 - h) * (w + 1 - argmax_w);
|
||||
if (h == argmax_h_high && w == argmax_w_high)
|
||||
weight = (argmax_h + 1 - h) * (argmax_w + 1 - w);
|
||||
return weight;
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__device__ scalar_t dmcn_get_coordinate_weight(scalar_t argmax_h, scalar_t argmax_w,
|
||||
const int height, const int width, const scalar_t *im_data,
|
||||
const int data_width, const int bp_dir)
|
||||
{
|
||||
if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 || argmax_w >= width)
|
||||
{
|
||||
//empty
|
||||
return 0;
|
||||
}
|
||||
|
||||
int argmax_h_low = floor(argmax_h);
|
||||
int argmax_w_low = floor(argmax_w);
|
||||
int argmax_h_high = argmax_h_low + 1;
|
||||
int argmax_w_high = argmax_w_low + 1;
|
||||
|
||||
scalar_t weight = 0;
|
||||
|
||||
if (bp_dir == 0)
|
||||
{
|
||||
if (argmax_h_low >= 0 && argmax_w_low >= 0)
|
||||
weight += -1 * (argmax_w_low + 1 - argmax_w) * im_data[argmax_h_low * data_width + argmax_w_low];
|
||||
if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
|
||||
weight += -1 * (argmax_w - argmax_w_low) * im_data[argmax_h_low * data_width + argmax_w_high];
|
||||
if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
|
||||
weight += (argmax_w_low + 1 - argmax_w) * im_data[argmax_h_high * data_width + argmax_w_low];
|
||||
if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
|
||||
weight += (argmax_w - argmax_w_low) * im_data[argmax_h_high * data_width + argmax_w_high];
|
||||
}
|
||||
else if (bp_dir == 1)
|
||||
{
|
||||
if (argmax_h_low >= 0 && argmax_w_low >= 0)
|
||||
weight += -1 * (argmax_h_low + 1 - argmax_h) * im_data[argmax_h_low * data_width + argmax_w_low];
|
||||
if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
|
||||
weight += (argmax_h_low + 1 - argmax_h) * im_data[argmax_h_low * data_width + argmax_w_high];
|
||||
if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
|
||||
weight += -1 * (argmax_h - argmax_h_low) * im_data[argmax_h_high * data_width + argmax_w_low];
|
||||
if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
|
||||
weight += (argmax_h - argmax_h_low) * im_data[argmax_h_high * data_width + argmax_w_high];
|
||||
}
|
||||
|
||||
return weight;
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__global__ void modulated_deformable_im2col_gpu_kernel(const int n,
|
||||
const scalar_t *data_im, const scalar_t *data_offset, const scalar_t *data_mask,
|
||||
const int height, const int width, const int kernel_h, const int kernel_w,
|
||||
const int pad_h, const int pad_w,
|
||||
const int stride_h, const int stride_w,
|
||||
const int dilation_h, const int dilation_w,
|
||||
const int channel_per_deformable_group,
|
||||
const int batch_size, const int num_channels, const int deformable_group,
|
||||
const int height_col, const int width_col,
|
||||
scalar_t *data_col)
|
||||
{
|
||||
CUDA_KERNEL_LOOP(index, n)
|
||||
{
|
||||
// index index of output matrix
|
||||
const int w_col = index % width_col;
|
||||
const int h_col = (index / width_col) % height_col;
|
||||
const int b_col = (index / width_col / height_col) % batch_size;
|
||||
const int c_im = (index / width_col / height_col) / batch_size;
|
||||
const int c_col = c_im * kernel_h * kernel_w;
|
||||
|
||||
// compute deformable group index
|
||||
const int deformable_group_index = c_im / channel_per_deformable_group;
|
||||
|
||||
const int h_in = h_col * stride_h - pad_h;
|
||||
const int w_in = w_col * stride_w - pad_w;
|
||||
|
||||
scalar_t *data_col_ptr = data_col + ((c_col * batch_size + b_col) * height_col + h_col) * width_col + w_col;
|
||||
//const float* data_im_ptr = data_im + ((b_col * num_channels + c_im) * height + h_in) * width + w_in;
|
||||
const scalar_t *data_im_ptr = data_im + (b_col * num_channels + c_im) * height * width;
|
||||
const scalar_t *data_offset_ptr = data_offset + (b_col * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col;
|
||||
|
||||
const scalar_t *data_mask_ptr = data_mask + (b_col * deformable_group + deformable_group_index) * kernel_h * kernel_w * height_col * width_col;
|
||||
|
||||
for (int i = 0; i < kernel_h; ++i)
|
||||
{
|
||||
for (int j = 0; j < kernel_w; ++j)
|
||||
{
|
||||
const int data_offset_h_ptr = ((2 * (i * kernel_w + j)) * height_col + h_col) * width_col + w_col;
|
||||
const int data_offset_w_ptr = ((2 * (i * kernel_w + j) + 1) * height_col + h_col) * width_col + w_col;
|
||||
const int data_mask_hw_ptr = ((i * kernel_w + j) * height_col + h_col) * width_col + w_col;
|
||||
const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
|
||||
const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
|
||||
const scalar_t mask = data_mask_ptr[data_mask_hw_ptr];
|
||||
scalar_t val = static_cast<scalar_t>(0);
|
||||
const scalar_t h_im = h_in + i * dilation_h + offset_h;
|
||||
const scalar_t w_im = w_in + j * dilation_w + offset_w;
|
||||
//if (h_im >= 0 && w_im >= 0 && h_im < height && w_im < width) {
|
||||
if (h_im > -1 && w_im > -1 && h_im < height && w_im < width)
|
||||
{
|
||||
//const float map_h = i * dilation_h + offset_h;
|
||||
//const float map_w = j * dilation_w + offset_w;
|
||||
//const int cur_height = height - h_in;
|
||||
//const int cur_width = width - w_in;
|
||||
//val = dmcn_im2col_bilinear(data_im_ptr, width, cur_height, cur_width, map_h, map_w);
|
||||
val = dmcn_im2col_bilinear(data_im_ptr, width, height, width, h_im, w_im);
|
||||
}
|
||||
*data_col_ptr = val * mask;
|
||||
data_col_ptr += batch_size * height_col * width_col;
|
||||
//data_col_ptr += height_col * width_col;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__global__ void modulated_deformable_col2im_gpu_kernel(const int n,
|
||||
const scalar_t *data_col, const scalar_t *data_offset, const scalar_t *data_mask,
|
||||
const int channels, const int height, const int width,
|
||||
const int kernel_h, const int kernel_w,
|
||||
const int pad_h, const int pad_w,
|
||||
const int stride_h, const int stride_w,
|
||||
const int dilation_h, const int dilation_w,
|
||||
const int channel_per_deformable_group,
|
||||
const int batch_size, const int deformable_group,
|
||||
const int height_col, const int width_col,
|
||||
scalar_t *grad_im)
|
||||
{
|
||||
CUDA_KERNEL_LOOP(index, n)
|
||||
{
|
||||
const int j = (index / width_col / height_col / batch_size) % kernel_w;
|
||||
const int i = (index / width_col / height_col / batch_size / kernel_w) % kernel_h;
|
||||
const int c = index / width_col / height_col / batch_size / kernel_w / kernel_h;
|
||||
// compute the start and end of the output
|
||||
|
||||
const int deformable_group_index = c / channel_per_deformable_group;
|
||||
|
||||
int w_out = index % width_col;
|
||||
int h_out = (index / width_col) % height_col;
|
||||
int b = (index / width_col / height_col) % batch_size;
|
||||
int w_in = w_out * stride_w - pad_w;
|
||||
int h_in = h_out * stride_h - pad_h;
|
||||
|
||||
const scalar_t *data_offset_ptr = data_offset + (b * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col;
|
||||
const scalar_t *data_mask_ptr = data_mask + (b * deformable_group + deformable_group_index) * kernel_h * kernel_w * height_col * width_col;
|
||||
const int data_offset_h_ptr = ((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out;
|
||||
const int data_offset_w_ptr = ((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out;
|
||||
const int data_mask_hw_ptr = ((i * kernel_w + j) * height_col + h_out) * width_col + w_out;
|
||||
const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
|
||||
const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
|
||||
const scalar_t mask = data_mask_ptr[data_mask_hw_ptr];
|
||||
const scalar_t cur_inv_h_data = h_in + i * dilation_h + offset_h;
|
||||
const scalar_t cur_inv_w_data = w_in + j * dilation_w + offset_w;
|
||||
|
||||
const scalar_t cur_top_grad = data_col[index] * mask;
|
||||
const int cur_h = (int)cur_inv_h_data;
|
||||
const int cur_w = (int)cur_inv_w_data;
|
||||
for (int dy = -2; dy <= 2; dy++)
|
||||
{
|
||||
for (int dx = -2; dx <= 2; dx++)
|
||||
{
|
||||
if (cur_h + dy >= 0 && cur_h + dy < height &&
|
||||
cur_w + dx >= 0 && cur_w + dx < width &&
|
||||
abs(cur_inv_h_data - (cur_h + dy)) < 1 &&
|
||||
abs(cur_inv_w_data - (cur_w + dx)) < 1)
|
||||
{
|
||||
int cur_bottom_grad_pos = ((b * channels + c) * height + cur_h + dy) * width + cur_w + dx;
|
||||
scalar_t weight = dmcn_get_gradient_weight(cur_inv_h_data, cur_inv_w_data, cur_h + dy, cur_w + dx, height, width);
|
||||
atomicAdd(grad_im + cur_bottom_grad_pos, weight * cur_top_grad);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename scalar_t>
|
||||
__global__ void modulated_deformable_col2im_coord_gpu_kernel(const int n,
|
||||
const scalar_t *data_col, const scalar_t *data_im,
|
||||
const scalar_t *data_offset, const scalar_t *data_mask,
|
||||
const int channels, const int height, const int width,
|
||||
const int kernel_h, const int kernel_w,
|
||||
const int pad_h, const int pad_w,
|
||||
const int stride_h, const int stride_w,
|
||||
const int dilation_h, const int dilation_w,
|
||||
const int channel_per_deformable_group,
|
||||
const int batch_size, const int offset_channels, const int deformable_group,
|
||||
const int height_col, const int width_col,
|
||||
scalar_t *grad_offset, scalar_t *grad_mask)
|
||||
{
|
||||
CUDA_KERNEL_LOOP(index, n)
|
||||
{
|
||||
scalar_t val = 0, mval = 0;
|
||||
int w = index % width_col;
|
||||
int h = (index / width_col) % height_col;
|
||||
int c = (index / width_col / height_col) % offset_channels;
|
||||
int b = (index / width_col / height_col) / offset_channels;
|
||||
// compute the start and end of the output
|
||||
|
||||
const int deformable_group_index = c / (2 * kernel_h * kernel_w);
|
||||
const int col_step = kernel_h * kernel_w;
|
||||
int cnt = 0;
|
||||
const scalar_t *data_col_ptr = data_col + deformable_group_index * channel_per_deformable_group * batch_size * width_col * height_col;
|
||||
const scalar_t *data_im_ptr = data_im + (b * deformable_group + deformable_group_index) * channel_per_deformable_group / kernel_h / kernel_w * height * width;
|
||||
const scalar_t *data_offset_ptr = data_offset + (b * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col;
|
||||
const scalar_t *data_mask_ptr = data_mask + (b * deformable_group + deformable_group_index) * kernel_h * kernel_w * height_col * width_col;
|
||||
|
||||
const int offset_c = c - deformable_group_index * 2 * kernel_h * kernel_w;
|
||||
|
||||
for (int col_c = (offset_c / 2); col_c < channel_per_deformable_group; col_c += col_step)
|
||||
{
|
||||
const int col_pos = (((col_c * batch_size + b) * height_col) + h) * width_col + w;
|
||||
const int bp_dir = offset_c % 2;
|
||||
|
||||
int j = (col_pos / width_col / height_col / batch_size) % kernel_w;
|
||||
int i = (col_pos / width_col / height_col / batch_size / kernel_w) % kernel_h;
|
||||
int w_out = col_pos % width_col;
|
||||
int h_out = (col_pos / width_col) % height_col;
|
||||
int w_in = w_out * stride_w - pad_w;
|
||||
int h_in = h_out * stride_h - pad_h;
|
||||
const int data_offset_h_ptr = (((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out);
|
||||
const int data_offset_w_ptr = (((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out);
|
||||
const int data_mask_hw_ptr = (((i * kernel_w + j) * height_col + h_out) * width_col + w_out);
|
||||
const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
|
||||
const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
|
||||
const scalar_t mask = data_mask_ptr[data_mask_hw_ptr];
|
||||
scalar_t inv_h = h_in + i * dilation_h + offset_h;
|
||||
scalar_t inv_w = w_in + j * dilation_w + offset_w;
|
||||
if (inv_h <= -1 || inv_w <= -1 || inv_h >= height || inv_w >= width)
|
||||
{
|
||||
inv_h = inv_w = -2;
|
||||
}
|
||||
else
|
||||
{
|
||||
mval += data_col_ptr[col_pos] * dmcn_im2col_bilinear(data_im_ptr + cnt * height * width, width, height, width, inv_h, inv_w);
|
||||
}
|
||||
const scalar_t weight = dmcn_get_coordinate_weight(
|
||||
inv_h, inv_w,
|
||||
height, width, data_im_ptr + cnt * height * width, width, bp_dir);
|
||||
val += weight * data_col_ptr[col_pos] * mask;
|
||||
cnt += 1;
|
||||
}
|
||||
// KERNEL_ASSIGN(grad_offset[index], offset_req, val);
|
||||
grad_offset[index] = val;
|
||||
if (offset_c % 2 == 0)
|
||||
// KERNEL_ASSIGN(grad_mask[(((b * deformable_group + deformable_group_index) * kernel_h * kernel_w + offset_c / 2) * height_col + h) * width_col + w], mask_req, mval);
|
||||
grad_mask[(((b * deformable_group + deformable_group_index) * kernel_h * kernel_w + offset_c / 2) * height_col + h) * width_col + w] = mval;
|
||||
}
|
||||
}
|
||||
|
||||
void modulated_deformable_im2col_cuda(
|
||||
const at::Tensor data_im, const at::Tensor data_offset, const at::Tensor data_mask,
|
||||
const int batch_size, const int channels, const int height_im, const int width_im,
|
||||
const int height_col, const int width_col, const int kernel_h, const int kenerl_w,
|
||||
const int pad_h, const int pad_w, const int stride_h, const int stride_w,
|
||||
const int dilation_h, const int dilation_w,
|
||||
const int deformable_group, at::Tensor data_col)
|
||||
{
|
||||
// num_axes should be smaller than block size
|
||||
const int channel_per_deformable_group = channels / deformable_group;
|
||||
const int num_kernels = channels * batch_size * height_col * width_col;
|
||||
|
||||
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
|
||||
data_im.scalar_type(), "modulated_deformable_im2col_gpu", ([&] {
|
||||
const scalar_t *data_im_ = data_im.data<scalar_t>();
|
||||
const scalar_t *data_offset_ = data_offset.data<scalar_t>();
|
||||
const scalar_t *data_mask_ = data_mask.data<scalar_t>();
|
||||
scalar_t *data_col_ = data_col.data<scalar_t>();
|
||||
|
||||
modulated_deformable_im2col_gpu_kernel<<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS>>>(
|
||||
num_kernels, data_im_, data_offset_, data_mask_, height_im, width_im, kernel_h, kenerl_w,
|
||||
pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w, channel_per_deformable_group,
|
||||
batch_size, channels, deformable_group, height_col, width_col, data_col_);
|
||||
}));
|
||||
|
||||
cudaError_t err = cudaGetLastError();
|
||||
if (err != cudaSuccess)
|
||||
{
|
||||
printf("error in modulated_deformable_im2col_cuda: %s\n", cudaGetErrorString(err));
|
||||
}
|
||||
}
|
||||
|
||||
void modulated_deformable_col2im_cuda(
|
||||
const at::Tensor data_col, const at::Tensor data_offset, const at::Tensor data_mask,
|
||||
const int batch_size, const int channels, const int height_im, const int width_im,
|
||||
const int height_col, const int width_col, const int kernel_h, const int kernel_w,
|
||||
const int pad_h, const int pad_w, const int stride_h, const int stride_w,
|
||||
const int dilation_h, const int dilation_w,
|
||||
const int deformable_group, at::Tensor grad_im)
|
||||
{
|
||||
|
||||
const int channel_per_deformable_group = channels / deformable_group;
|
||||
const int num_kernels = channels * kernel_h * kernel_w * batch_size * height_col * width_col;
|
||||
|
||||
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
|
||||
data_col.scalar_type(), "modulated_deformable_col2im_gpu", ([&] {
|
||||
const scalar_t *data_col_ = data_col.data<scalar_t>();
|
||||
const scalar_t *data_offset_ = data_offset.data<scalar_t>();
|
||||
const scalar_t *data_mask_ = data_mask.data<scalar_t>();
|
||||
scalar_t *grad_im_ = grad_im.data<scalar_t>();
|
||||
|
||||
modulated_deformable_col2im_gpu_kernel<<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS>>>(
|
||||
num_kernels, data_col_, data_offset_, data_mask_, channels, height_im, width_im,
|
||||
kernel_h, kernel_w, pad_h, pad_h, stride_h, stride_w,
|
||||
dilation_h, dilation_w, channel_per_deformable_group,
|
||||
batch_size, deformable_group, height_col, width_col, grad_im_);
|
||||
}));
|
||||
|
||||
cudaError_t err = cudaGetLastError();
|
||||
if (err != cudaSuccess)
|
||||
{
|
||||
printf("error in modulated_deformable_col2im_cuda: %s\n", cudaGetErrorString(err));
|
||||
}
|
||||
}
|
||||
|
||||
void modulated_deformable_col2im_coord_cuda(
|
||||
const at::Tensor data_col, const at::Tensor data_im, const at::Tensor data_offset, const at::Tensor data_mask,
|
||||
const int batch_size, const int channels, const int height_im, const int width_im,
|
||||
const int height_col, const int width_col, const int kernel_h, const int kernel_w,
|
||||
const int pad_h, const int pad_w, const int stride_h, const int stride_w,
|
||||
const int dilation_h, const int dilation_w,
|
||||
const int deformable_group,
|
||||
at::Tensor grad_offset, at::Tensor grad_mask)
|
||||
{
|
||||
const int num_kernels = batch_size * height_col * width_col * 2 * kernel_h * kernel_w * deformable_group;
|
||||
const int channel_per_deformable_group = channels * kernel_h * kernel_w / deformable_group;
|
||||
|
||||
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
|
||||
data_col.scalar_type(), "modulated_deformable_col2im_coord_gpu", ([&] {
|
||||
const scalar_t *data_col_ = data_col.data<scalar_t>();
|
||||
const scalar_t *data_im_ = data_im.data<scalar_t>();
|
||||
const scalar_t *data_offset_ = data_offset.data<scalar_t>();
|
||||
const scalar_t *data_mask_ = data_mask.data<scalar_t>();
|
||||
scalar_t *grad_offset_ = grad_offset.data<scalar_t>();
|
||||
scalar_t *grad_mask_ = grad_mask.data<scalar_t>();
|
||||
|
||||
modulated_deformable_col2im_coord_gpu_kernel<<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS>>>(
|
||||
num_kernels, data_col_, data_im_, data_offset_, data_mask_, channels, height_im, width_im,
|
||||
kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
|
||||
dilation_h, dilation_w, channel_per_deformable_group,
|
||||
batch_size, 2 * kernel_h * kernel_w * deformable_group, deformable_group, height_col, width_col,
|
||||
grad_offset_, grad_mask_);
|
||||
}));
|
||||
cudaError_t err = cudaGetLastError();
|
||||
if (err != cudaSuccess)
|
||||
{
|
||||
printf("error in modulated_deformable_col2im_coord_cuda: %s\n", cudaGetErrorString(err));
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user