forked from mrq/DL-Art-School
lets try a different tact
This commit is contained in:
parent
2158383fa4
commit
8f40108f5b
|
@ -196,16 +196,18 @@ class TransformerDiffusion(nn.Module):
|
|||
|
||||
|
||||
class TransformerDiffusionWithQuantizer(nn.Module):
|
||||
def __init__(self, freeze_quantizer_until=20000, **kwargs):
|
||||
def __init__(self, train_quantizer_reconstruction_until=-1, freeze_quantizer_until=10000, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
self.internal_step = 0
|
||||
self.freeze_quantizer_until = freeze_quantizer_until
|
||||
self.train_quantizer_reconstruction_until = train_quantizer_reconstruction_until
|
||||
self.diff = TransformerDiffusion(**kwargs)
|
||||
self.quantizer = MusicQuantizer2(inp_channels=256, inner_dim=[1024], codevector_dim=1024, codebook_size=256,
|
||||
codebook_groups=2, max_gumbel_temperature=4, min_gumbel_temperature=.5)
|
||||
self.quantizer.quantizer.temperature = self.quantizer.min_gumbel_temperature
|
||||
del self.quantizer.up
|
||||
if train_quantizer_reconstruction_until == -1:
|
||||
# We won't be using the upsampler, so delete it.
|
||||
del self.quantizer.up
|
||||
|
||||
def update_for_step(self, step, *args):
|
||||
self.internal_step = step
|
||||
|
@ -216,13 +218,24 @@ class TransformerDiffusionWithQuantizer(nn.Module):
|
|||
)
|
||||
|
||||
def forward(self, x, timesteps, truth_mel, conditioning_input=None, disable_diversity=False, conditioning_free=False):
|
||||
quant_grad_enabled = self.internal_step > self.freeze_quantizer_until
|
||||
diff_disabled = self.internal_step < self.train_quantizer_reconstruction_until
|
||||
if diff_disabled:
|
||||
mse, diversity_loss = self.quantizer(truth_mel)
|
||||
|
||||
# Use the diff parameters so DDP doesn't give us grief.
|
||||
unused = 0
|
||||
for p in self.diff.parameters():
|
||||
unused = unused + p.mean() * 0
|
||||
mse = mse + unused
|
||||
return x, diversity_loss, mse
|
||||
|
||||
quant_grad_enabled = self.internal_step >= self.freeze_quantizer_until
|
||||
with torch.set_grad_enabled(quant_grad_enabled):
|
||||
proj, diversity_loss = self.quantizer(truth_mel, return_decoder_latent=True)
|
||||
proj = proj.permute(0,2,1)
|
||||
|
||||
# Make sure this does not cause issues in DDP by explicitly using the parameters for nothing.
|
||||
if not quant_grad_enabled:
|
||||
# Make sure this does not cause issues in DDP by explicitly using the parameters for nothing.
|
||||
unused = 0
|
||||
for p in self.quantizer.parameters():
|
||||
unused = unused + p.mean() * 0
|
||||
|
@ -232,7 +245,7 @@ class TransformerDiffusionWithQuantizer(nn.Module):
|
|||
diff = self.diff(x, timesteps, codes=proj, conditioning_input=conditioning_input, conditioning_free=conditioning_free)
|
||||
if disable_diversity:
|
||||
return diff
|
||||
return diff, diversity_loss
|
||||
return diff, diversity_loss, None
|
||||
|
||||
def get_debug_values(self, step, __):
|
||||
if self.quantizer.total_codes > 0:
|
||||
|
@ -317,7 +330,8 @@ def test_quant_model():
|
|||
clip = torch.randn(2, 256, 400)
|
||||
ts = torch.LongTensor([600, 600])
|
||||
model = TransformerDiffusionWithQuantizer(model_channels=2048, block_channels=1024, prenet_channels=1024,
|
||||
input_vec_dim=1024, num_layers=16, prenet_layers=6)
|
||||
input_vec_dim=1024, num_layers=16, prenet_layers=6,
|
||||
train_quantizer_reconstruction_until=1000)
|
||||
model.get_grad_norm_parameter_groups()
|
||||
|
||||
print_network(model)
|
||||
|
|
Loading…
Reference in New Issue
Block a user