Support legacy vqvae quantizer in music_quantizer

This commit is contained in:
James Betker 2022-06-04 10:16:24 -06:00
parent 4819f15521
commit 8f8b189025

View File

@ -5,6 +5,7 @@ from torch import nn
import torch.nn.functional as F
from models.arch_util import zero_module
from models.vqvae.vqvae import Quantize
from trainer.networks import register_model
from utils.util import checkpoint, ceil_multiple, print_network
@ -152,16 +153,21 @@ class Wav2Vec2GumbelVectorQuantizer(nn.Module):
class MusicQuantizer(nn.Module):
def __init__(self, inp_channels=256, inner_dim=1024, codevector_dim=1024, down_steps=2,
max_gumbel_temperature=2.0, min_gumbel_temperature=.5, gumbel_temperature_decay=.999995,
codebook_size=16, codebook_groups=4):
codebook_size=16, codebook_groups=4, use_vqvae_quantizer=False):
super().__init__()
if not isinstance(inner_dim, list):
inner_dim = [inner_dim // 2 ** x for x in range(down_steps+1)]
self.max_gumbel_temperature = max_gumbel_temperature
self.min_gumbel_temperature = min_gumbel_temperature
self.gumbel_temperature_decay = gumbel_temperature_decay
self.quantizer = Wav2Vec2GumbelVectorQuantizer(inner_dim[0], codevector_dim=codevector_dim,
num_codevector_groups=codebook_groups,
num_codevectors_per_group=codebook_size)
self.use_vqvae_quantizer = use_vqvae_quantizer
if use_vqvae_quantizer:
self.quantizer = Quantize(inner_dim[0], codebook_size)
assert codevector_dim == inner_dim[0] # Because this quantizer doesn't support different sizes.
else:
self.quantizer = Wav2Vec2GumbelVectorQuantizer(inner_dim[0], codevector_dim=codevector_dim,
num_codevector_groups=codebook_groups,
num_codevectors_per_group=codebook_size)
self.codebook_size = codebook_size
self.codebook_groups = codebook_groups
self.num_losses_record = []
@ -209,8 +215,11 @@ class MusicQuantizer(nn.Module):
h = self.down(mel)
h = self.encoder(h)
h = self.enc_norm(h.permute(0,2,1))
codevectors, perplexity, codes = self.quantizer(h, return_probs=True)
diversity = (self.quantizer.num_codevectors - perplexity) / self.quantizer.num_codevectors
if self.use_vqvae_quantizer:
codevectors, diversity, codes = self.quantizer(h)
else:
codevectors, perplexity, codes = self.quantizer(h, return_probs=True)
diversity = (self.quantizer.num_codevectors - perplexity) / self.quantizer.num_codevectors
self.log_codes(codes)
h = self.decoder(codevectors.permute(0,2,1))
if return_decoder_latent:
@ -224,11 +233,12 @@ class MusicQuantizer(nn.Module):
def log_codes(self, codes):
if self.internal_step % 5 == 0:
codes = torch.argmax(codes, dim=-1)
ccodes = codes[:,:,0]
for j in range(1,codes.shape[-1]):
ccodes += codes[:,:,j] * self.codebook_size ** j
codes = ccodes
if not self.use_vqvae_quantizer:
codes = torch.argmax(codes, dim=-1)
ccodes = codes[:,:,0]
for j in range(1,codes.shape[-1]):
ccodes += codes[:,:,j] * self.codebook_size ** j
codes = ccodes
codes = codes.flatten()
l = codes.shape[0]
i = self.code_ind if (self.codes.shape[0] - self.code_ind) > l else self.codes.shape[0] - l
@ -251,7 +261,7 @@ def register_music_quantizer(opt_net, opt):
if __name__ == '__main__':
model = MusicQuantizer(inner_dim=[1024,1024,512], codevector_dim=1024, codebook_size=512, codebook_groups=2)
model = MusicQuantizer(inner_dim=[1024,1024,512], codevector_dim=1024, codebook_size=8192, codebook_groups=0, use_vqvae_quantizer=True)
print_network(model)
mel = torch.randn((2,256,782))
model(mel)