forked from mrq/DL-Art-School
glean mods
This commit is contained in:
parent
f35c034fa5
commit
9377d34ac3
|
@ -32,7 +32,7 @@ class GleanEncoderBlock(nn.Module):
|
|||
# and latent vectors (`C` shape=[b,l,f] l=levels aka C_sub) for use with the latent bank.
|
||||
# Note that latent levels and convolutional feature levels do not necessarily match, per the paper.
|
||||
class GleanEncoder(nn.Module):
|
||||
def __init__(self, nf, nb, reductions=4, latent_bank_blocks=13, latent_bank_latent_dim=512, input_dim=32):
|
||||
def __init__(self, nf, nb, reductions=4, latent_bank_blocks=7, latent_bank_latent_dim=512, input_dim=32):
|
||||
super().__init__()
|
||||
self.initial_conv = ConvGnLelu(3, nf, kernel_size=7, activation=False, norm=False, bias=True)
|
||||
self.rrdb_blocks = nn.Sequential(*[RRDB(nf) for _ in range(nb)])
|
||||
|
@ -41,11 +41,10 @@ class GleanEncoder(nn.Module):
|
|||
reducer_output_dim = (input_dim // (2 ** reductions)) ** 2
|
||||
reducer_output_nf = nf * 2 ** reductions
|
||||
self.latent_conv = ConvGnLelu(reducer_output_nf, reducer_output_nf, kernel_size=1, activation=True, norm=False, bias=True)
|
||||
# This is a questionable part of this architecture. Apply multiple Denses to separate outputs (as I've done here)?
|
||||
# Apply a single dense, then split the outputs? Who knows..
|
||||
self.latent_linears = nn.ModuleList([EqualLinear(reducer_output_dim * reducer_output_nf, latent_bank_latent_dim,
|
||||
activation="fused_lrelu")
|
||||
for _ in range(latent_bank_blocks)])
|
||||
self.latent_linear = EqualLinear(reducer_output_dim * reducer_output_nf,
|
||||
latent_bank_latent_dim * latent_bank_blocks,
|
||||
activation="fused_lrelu")
|
||||
self.latent_bank_blocks = latent_bank_blocks
|
||||
|
||||
def forward(self, x):
|
||||
fea = self.initial_conv(x)
|
||||
|
@ -57,8 +56,7 @@ class GleanEncoder(nn.Module):
|
|||
convolutional_features.append(f)
|
||||
|
||||
latents = self.latent_conv(fea)
|
||||
latents = [dense(latents.flatten(1, -1)) for dense in self.latent_linears]
|
||||
latents = torch.stack(latents, dim=1)
|
||||
latents = self.latent_linear(latents.flatten(1, -1)).view(fea.shape[0], self.latent_bank_blocks, -1)
|
||||
|
||||
return rrdb_fea, convolutional_features, latents
|
||||
|
||||
|
@ -68,26 +66,23 @@ class GleanDecoder(nn.Module):
|
|||
# To determine latent_bank_filters, use the `self.channels` map for the desired input dimensions from stylegan2_rosinality.py
|
||||
def __init__(self, nf, latent_bank_filters=[512, 256, 128]):
|
||||
super().__init__()
|
||||
self.initial_conv = ConvGnLelu(nf, nf, kernel_size=3, activation=False, norm=False, bias=True)
|
||||
self.initial_conv = ConvGnLelu(nf, nf, kernel_size=3, activation=True, norm=False, bias=True, weight_init_factor=.1)
|
||||
|
||||
# The paper calls for pixel shuffling each output of the decoder. We need to make sure that is possible. Doing it by using the latent bank filters as the output filters for each decoder stage
|
||||
assert latent_bank_filters[-1] % 4 == 0
|
||||
decoder_block_shuffled_dims = [nf // 4]
|
||||
decoder_block_shuffled_dims.extend([l // 4 for l in latent_bank_filters])
|
||||
decoder_block_shuffled_dims = [nf] + latent_bank_filters
|
||||
self.decoder_blocks = nn.ModuleList([ConvGnLelu(decoder_block_shuffled_dims[i] + latent_bank_filters[i],
|
||||
latent_bank_filters[i],
|
||||
kernel_size=3, bias=True, norm=False, activation=False)
|
||||
kernel_size=3, bias=True, norm=False, activation=True,
|
||||
weight_init_factor=.1)
|
||||
for i in range(len(latent_bank_filters))])
|
||||
self.shuffler = nn.PixelShuffle(2) # TODO: I'm a bit skeptical about this. It doesn't align with RRDB or StyleGAN. It also always produces artifacts in my experience. Try using interpolation instead.
|
||||
|
||||
final_dim = latent_bank_filters[-1]
|
||||
self.final_decode = nn.Sequential(ConvGnLelu(final_dim, final_dim, kernel_size=3, activation=True, bias=True, norm=False),
|
||||
ConvGnLelu(final_dim, 3, kernel_size=3, activation=False, bias=True, norm=False))
|
||||
self.final_decode = ConvGnLelu(final_dim, 3, kernel_size=3, activation=False, bias=True, norm=False, weight_init_factor=.1)
|
||||
|
||||
def forward(self, rrdb_fea, latent_bank_fea):
|
||||
fea = self.initial_conv(rrdb_fea)
|
||||
for i, block in enumerate(self.decoder_blocks):
|
||||
fea = self.shuffler(fea)
|
||||
# The paper calls for PixelShuffle here, but I don't have good experience with that. It also doesn't align with the way the underlying StyleGAN works.
|
||||
fea = nn.functional.interpolate(fea, scale_factor=2, mode="nearest")
|
||||
fea = torch.cat([fea, latent_bank_fea[i]], dim=1)
|
||||
fea = checkpoint(block, fea)
|
||||
return self.final_decode(fea)
|
||||
|
@ -98,9 +93,8 @@ class GleanGenerator(nn.Module):
|
|||
encoder_rrdb_nb=6, encoder_reductions=4, latent_bank_latent_dim=512, input_dim=32):
|
||||
super().__init__()
|
||||
self.input_dim = input_dim
|
||||
latent_blocks = int(math.log(gen_output_dim, 2)) - 1 # From 4x4->gen_output_dim x gen_output_dim
|
||||
latent_blocks = latent_blocks * 2 + 1 # Two styled convolutions per block, + an initial styled conv.
|
||||
self.encoder = GleanEncoder(nf, encoder_rrdb_nb, reductions=encoder_reductions, latent_bank_blocks=latent_blocks * 2 + 1,
|
||||
latent_blocks = int(math.log(gen_output_dim, 2)) # From 4x4->gen_output_dim x gen_output_dim + initial styled conv
|
||||
self.encoder = GleanEncoder(nf, encoder_rrdb_nb, reductions=encoder_reductions, latent_bank_blocks=latent_blocks,
|
||||
latent_bank_latent_dim=latent_bank_latent_dim, input_dim=input_dim)
|
||||
decoder_blocks = int(math.log(gen_output_dim/input_dim, 2))
|
||||
latent_bank_filters_out = [512, 256, 128] # TODO: Use decoder_blocks to synthesize the correct value for latent_bank_filters here. The fixed defaults will work fine for testing, though.
|
||||
|
|
|
@ -45,22 +45,21 @@ class Stylegan2LatentBank(nn.Module):
|
|||
out = self.bank.input(latent_vectors[:, 0]) # The input here is only used to fetch the batch size.
|
||||
out = self.bank.conv1(out, latent_vectors[:, 0], noise=None)
|
||||
|
||||
i, k = 1, 0
|
||||
k = 0
|
||||
decoder_outputs = []
|
||||
for conv1, conv2 in zip(self.bank.convs[::2], self.bank.convs[1::2]):
|
||||
if k < len(self.fusion_blocks):
|
||||
out = torch.cat([convolutional_features[-k-1], out], dim=1)
|
||||
out = self.fusion_blocks[k](out)
|
||||
|
||||
out = conv1(out, latent_vectors[:, i], noise=None)
|
||||
out = conv2(out, latent_vectors[:, i + 1], noise=None)
|
||||
out = conv1(out, latent_vectors[:, k], noise=None)
|
||||
out = conv2(out, latent_vectors[:, k], noise=None)
|
||||
|
||||
if k >= self.decoder_start:
|
||||
decoder_outputs.append(out)
|
||||
if k >= self.total_levels:
|
||||
break
|
||||
|
||||
i += 2
|
||||
k += 1
|
||||
|
||||
return decoder_outputs
|
||||
|
|
|
@ -90,23 +90,23 @@ steps:
|
|||
losses:
|
||||
pix:
|
||||
type: pix
|
||||
weight: .05
|
||||
criterion: l1
|
||||
weight: 1
|
||||
criterion: l2
|
||||
real: hq
|
||||
fake: gen
|
||||
feature:
|
||||
type: feature
|
||||
after: 5000
|
||||
which_model_F: vgg
|
||||
criterion: l1
|
||||
weight: 1
|
||||
criterion: l2
|
||||
weight: .01
|
||||
real: hq
|
||||
fake: gen
|
||||
gan_gen_img:
|
||||
after: 10000
|
||||
type: generator_gan
|
||||
gan_type: gan
|
||||
weight: .02
|
||||
weight: .01
|
||||
noise: .004
|
||||
discriminator: feature_discriminator
|
||||
fake: gen
|
||||
|
|
Loading…
Reference in New Issue
Block a user