forked from mrq/DL-Art-School
BYOL!
Man, is there anything ExtensibleTrainer can't train? :)
This commit is contained in:
parent
5369cba8ed
commit
97ff25a086
|
@ -47,11 +47,10 @@ def create_dataset(dataset_opt):
|
|||
from data.image_folder_dataset import ImageFolderDataset as D
|
||||
elif mode == 'torch_dataset':
|
||||
from data.torch_dataset import TorchDataset as D
|
||||
elif mode == 'byol_dataset':
|
||||
from data.byol_attachment import ByolDatasetWrapper as D
|
||||
else:
|
||||
raise NotImplementedError('Dataset [{:s}] is not recognized.'.format(mode))
|
||||
dataset = D(dataset_opt)
|
||||
|
||||
logger = logging.getLogger('base')
|
||||
logger.info('Dataset [{:s} - {:s}] is created.'.format(dataset.__class__.__name__,
|
||||
dataset_opt['name']))
|
||||
return dataset
|
||||
|
|
47
codes/data/byol_attachment.py
Normal file
47
codes/data/byol_attachment.py
Normal file
|
@ -0,0 +1,47 @@
|
|||
import random
|
||||
|
||||
import torch
|
||||
from torch.utils.data import Dataset
|
||||
from kornia import augmentation as augs
|
||||
from kornia import filters
|
||||
import torch.nn as nn
|
||||
|
||||
# Wrapper for a DLAS Dataset class that applies random augmentations from the BYOL paper to BOTH the 'lq' and 'hq'
|
||||
# inputs. These are then outputted as 'aug1' and 'aug2'.
|
||||
from data import create_dataset
|
||||
|
||||
|
||||
class RandomApply(nn.Module):
|
||||
def __init__(self, fn, p):
|
||||
super().__init__()
|
||||
self.fn = fn
|
||||
self.p = p
|
||||
def forward(self, x):
|
||||
if random.random() > self.p:
|
||||
return x
|
||||
return self.fn(x)
|
||||
|
||||
|
||||
class ByolDatasetWrapper(Dataset):
|
||||
def __init__(self, opt):
|
||||
super().__init__()
|
||||
self.wrapped_dataset = create_dataset(opt['dataset'])
|
||||
self.cropped_img_size = opt['crop_size']
|
||||
augmentations = [ \
|
||||
RandomApply(augs.ColorJitter(0.8, 0.8, 0.8, 0.2), p=0.8),
|
||||
augs.RandomGrayscale(p=0.2),
|
||||
augs.RandomHorizontalFlip(),
|
||||
RandomApply(filters.GaussianBlur2d((3, 3), (1.5, 1.5)), p=0.1),
|
||||
augs.RandomResizedCrop((self.cropped_img_size, self.cropped_img_size))]
|
||||
if opt['normalize']:
|
||||
# The paper calls for normalization. Recommend setting true if you want exactly like the paper.
|
||||
augmentations.append(augs.Normalize(mean=torch.tensor([0.485, 0.456, 0.406]), std=torch.tensor([0.229, 0.224, 0.225])))
|
||||
self.aug = nn.Sequential(*augmentations)
|
||||
|
||||
def __getitem__(self, item):
|
||||
item = self.wrapped_dataset[item]
|
||||
item.update({'aug1': self.aug(item['hq']).squeeze(dim=0), 'aug2': self.aug(item['lq']).squeeze(dim=0)})
|
||||
return item
|
||||
|
||||
def __len__(self):
|
||||
return len(self.wrapped_dataset)
|
237
codes/models/byol/byol_model_wrapper.py
Normal file
237
codes/models/byol/byol_model_wrapper.py
Normal file
|
@ -0,0 +1,237 @@
|
|||
import copy
|
||||
import random
|
||||
from functools import wraps
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
from torch import nn
|
||||
|
||||
from utils.util import checkpoint
|
||||
|
||||
|
||||
def default(val, def_val):
|
||||
return def_val if val is None else val
|
||||
|
||||
|
||||
def flatten(t):
|
||||
return t.reshape(t.shape[0], -1)
|
||||
|
||||
|
||||
def singleton(cache_key):
|
||||
def inner_fn(fn):
|
||||
@wraps(fn)
|
||||
def wrapper(self, *args, **kwargs):
|
||||
instance = getattr(self, cache_key)
|
||||
if instance is not None:
|
||||
return instance
|
||||
|
||||
instance = fn(self, *args, **kwargs)
|
||||
setattr(self, cache_key, instance)
|
||||
return instance
|
||||
|
||||
return wrapper
|
||||
|
||||
return inner_fn
|
||||
|
||||
|
||||
def get_module_device(module):
|
||||
return next(module.parameters()).device
|
||||
|
||||
|
||||
def set_requires_grad(model, val):
|
||||
for p in model.parameters():
|
||||
p.requires_grad = val
|
||||
|
||||
|
||||
# loss fn
|
||||
def loss_fn(x, y):
|
||||
x = F.normalize(x, dim=-1, p=2)
|
||||
y = F.normalize(y, dim=-1, p=2)
|
||||
return 2 - 2 * (x * y).sum(dim=-1)
|
||||
|
||||
|
||||
# exponential moving average
|
||||
class EMA():
|
||||
def __init__(self, beta):
|
||||
super().__init__()
|
||||
self.beta = beta
|
||||
|
||||
def update_average(self, old, new):
|
||||
if old is None:
|
||||
return new
|
||||
return old * self.beta + (1 - self.beta) * new
|
||||
|
||||
|
||||
def update_moving_average(ema_updater, ma_model, current_model):
|
||||
for current_params, ma_params in zip(current_model.parameters(), ma_model.parameters()):
|
||||
old_weight, up_weight = ma_params.data, current_params.data
|
||||
ma_params.data = ema_updater.update_average(old_weight, up_weight)
|
||||
|
||||
|
||||
# MLP class for projector and predictor
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, dim, projection_size, hidden_size=4096):
|
||||
super().__init__()
|
||||
self.net = nn.Sequential(
|
||||
nn.Linear(dim, hidden_size),
|
||||
nn.BatchNorm1d(hidden_size),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Linear(hidden_size, projection_size)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
x = flatten(x)
|
||||
return self.net(x)
|
||||
|
||||
|
||||
# A wrapper class for training against networks that do not collapse into a small-dimensioned latent.
|
||||
class StructuralMLP(nn.Module):
|
||||
def __init__(self, dim, projection_size, hidden_size=4096):
|
||||
super().__init__()
|
||||
b, c, h, w = dim
|
||||
flattened_dim = c * h // 4 * w // 4
|
||||
self.net = nn.Sequential(
|
||||
nn.Conv2d(c, c, kernel_size=3, padding=1, stride=2),
|
||||
nn.BatchNorm2d(c),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Conv2d(c, c, kernel_size=3, padding=1, stride=2),
|
||||
nn.BatchNorm2d(c),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Flatten(),
|
||||
nn.Linear(flattened_dim, hidden_size),
|
||||
nn.BatchNorm1d(hidden_size),
|
||||
nn.ReLU(inplace=True),
|
||||
nn.Linear(hidden_size, projection_size)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
return self.net(x)
|
||||
|
||||
|
||||
# a wrapper class for the base neural network
|
||||
# will manage the interception of the hidden layer output
|
||||
# and pipe it into the projecter and predictor nets
|
||||
class NetWrapper(nn.Module):
|
||||
def __init__(self, net, projection_size, projection_hidden_size, layer=-2, use_structural_mlp=False):
|
||||
super().__init__()
|
||||
self.net = net
|
||||
self.layer = layer
|
||||
|
||||
self.projector = None
|
||||
self.projection_size = projection_size
|
||||
self.projection_hidden_size = projection_hidden_size
|
||||
self.structural_mlp = use_structural_mlp
|
||||
|
||||
self.hidden = None
|
||||
self.hook_registered = False
|
||||
|
||||
def _find_layer(self):
|
||||
if type(self.layer) == str:
|
||||
modules = dict([*self.net.named_modules()])
|
||||
return modules.get(self.layer, None)
|
||||
elif type(self.layer) == int:
|
||||
children = [*self.net.children()]
|
||||
return children[self.layer]
|
||||
return None
|
||||
|
||||
def _hook(self, _, __, output):
|
||||
self.hidden = output
|
||||
|
||||
def _register_hook(self):
|
||||
layer = self._find_layer()
|
||||
assert layer is not None, f'hidden layer ({self.layer}) not found'
|
||||
handle = layer.register_forward_hook(self._hook)
|
||||
self.hook_registered = True
|
||||
|
||||
@singleton('projector')
|
||||
def _get_projector(self, hidden):
|
||||
if self.structural_mlp:
|
||||
projector = StructuralMLP(hidden.shape, self.projection_size, self.projection_hidden_size)
|
||||
else:
|
||||
_, dim = hidden.shape
|
||||
projector = MLP(dim, self.projection_size, self.projection_hidden_size)
|
||||
return projector.to(hidden)
|
||||
|
||||
def get_representation(self, x):
|
||||
if self.layer == -1:
|
||||
return self.net(x)
|
||||
|
||||
if not self.hook_registered:
|
||||
self._register_hook()
|
||||
|
||||
unused = self.net(x)
|
||||
hidden = self.hidden
|
||||
self.hidden = None
|
||||
assert hidden is not None, f'hidden layer {self.layer} never emitted an output'
|
||||
return hidden
|
||||
|
||||
def forward(self, x):
|
||||
representation = self.get_representation(x)
|
||||
projector = self._get_projector(representation)
|
||||
projection = checkpoint(projector, representation)
|
||||
return projection
|
||||
|
||||
|
||||
class BYOL(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
net,
|
||||
image_size,
|
||||
hidden_layer=-2,
|
||||
projection_size=256,
|
||||
projection_hidden_size=4096,
|
||||
moving_average_decay=0.99,
|
||||
use_momentum=True,
|
||||
structural_mlp=False
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.online_encoder = NetWrapper(net, projection_size, projection_hidden_size, layer=hidden_layer,
|
||||
use_structural_mlp=structural_mlp)
|
||||
|
||||
self.use_momentum = use_momentum
|
||||
self.target_encoder = None
|
||||
self.target_ema_updater = EMA(moving_average_decay)
|
||||
|
||||
self.online_predictor = MLP(projection_size, projection_size, projection_hidden_size)
|
||||
|
||||
# get device of network and make wrapper same device
|
||||
device = get_module_device(net)
|
||||
self.to(device)
|
||||
|
||||
# send a mock image tensor to instantiate singleton parameters
|
||||
self.forward(torch.randn(2, 3, image_size, image_size, device=device),
|
||||
torch.randn(2, 3, image_size, image_size, device=device))
|
||||
|
||||
@singleton('target_encoder')
|
||||
def _get_target_encoder(self):
|
||||
target_encoder = copy.deepcopy(self.online_encoder)
|
||||
set_requires_grad(target_encoder, False)
|
||||
return target_encoder
|
||||
|
||||
def reset_moving_average(self):
|
||||
del self.target_encoder
|
||||
self.target_encoder = None
|
||||
|
||||
def update_for_step(self, step, __):
|
||||
assert self.use_momentum, 'you do not need to update the moving average, since you have turned off momentum for the target encoder'
|
||||
assert self.target_encoder is not None, 'target encoder has not been created yet'
|
||||
update_moving_average(self.target_ema_updater, self.target_encoder, self.online_encoder)
|
||||
|
||||
def forward(self, image_one, image_two):
|
||||
online_proj_one = self.online_encoder(image_one)
|
||||
online_proj_two = self.online_encoder(image_two)
|
||||
|
||||
online_pred_one = self.online_predictor(online_proj_one)
|
||||
online_pred_two = self.online_predictor(online_proj_two)
|
||||
|
||||
with torch.no_grad():
|
||||
target_encoder = self._get_target_encoder() if self.use_momentum else self.online_encoder
|
||||
target_proj_one = target_encoder(image_one).detach()
|
||||
target_proj_two = target_encoder(image_two).detach()
|
||||
|
||||
loss_one = loss_fn(online_pred_one, target_proj_two.detach())
|
||||
loss_two = loss_fn(online_pred_two, target_proj_one.detach())
|
||||
|
||||
loss = loss_one + loss_two
|
||||
return loss.mean()
|
|
@ -21,6 +21,7 @@ from models.archs import srg2_classic
|
|||
from models.archs.biggan.biggan_discriminator import BigGanDiscriminator
|
||||
from models.archs.stylegan.Discriminator_StyleGAN import StyleGanDiscriminator
|
||||
from models.archs.teco_resgen import TecoGen
|
||||
from utils.util import opt_get
|
||||
|
||||
logger = logging.getLogger('base')
|
||||
|
||||
|
@ -147,6 +148,14 @@ def define_G(opt, opt_net, scale=None):
|
|||
elif which_model == 'igpt2':
|
||||
from models.archs.transformers.igpt.gpt2 import iGPT2
|
||||
netG = iGPT2(opt_net['embed_dim'], opt_net['num_heads'], opt_net['num_layers'], opt_net['num_pixels'] ** 2, opt_net['num_vocab'], centroids_file=opt_net['centroids_file'])
|
||||
elif which_model == 'byol':
|
||||
from models.byol.byol_model_wrapper import BYOL
|
||||
subnet = define_G(opt, opt_net['subnet'])
|
||||
netG = BYOL(subnet, opt_net['image_size'], opt_net['hidden_layer'],
|
||||
structural_mlp=opt_get(opt_net, ['use_structural_mlp'], False))
|
||||
elif which_model == 'spinenet':
|
||||
from models.archs.spinenet_arch import SpineNet
|
||||
netG = SpineNet(str(opt_net['arch']), in_channels=3, use_input_norm=opt_net['use_input_norm'])
|
||||
else:
|
||||
raise NotImplementedError('Generator model [{:s}] not recognized'.format(which_model))
|
||||
return netG
|
||||
|
|
34
recipes/byol/README.md
Normal file
34
recipes/byol/README.md
Normal file
|
@ -0,0 +1,34 @@
|
|||
# Working with BYOL in DLAS
|
||||
|
||||
[BYOL](https://arxiv.org/abs/2006.07733) is a technique for pretraining an arbitrary image processing
|
||||
neural network. It is built upon previous self-supervised architectures like SimCLR.
|
||||
|
||||
BYOL in DLAS is adapted from an implementation written by [lucidrains](https://github.com/lucidrains/byol-pytorch).
|
||||
It is implemented via two wrappers:
|
||||
|
||||
1. A Dataset wrapper that augments the LQ and HQ inputs from a typical DLAS dataset. Since differentiable
|
||||
augmentations don't actually matter for BYOL, it makes more sense (to me) to do this on the CPU at the
|
||||
dataset layer, so your GPU can focus on processing gradients.
|
||||
1. A model wrapper that attaches a small MLP to the end of your input network to produce a fixed
|
||||
size latent. This latent is used to produce the BYOL loss which trains the master weights from
|
||||
your network.
|
||||
|
||||
Thanks to the excellent implementation from lucidrains, this wrapping process makes training your
|
||||
network on unsupervised datasets extremely easy.
|
||||
|
||||
Note: My intent is to adapt BYOL for use on structured models - e.g. models that do *not* collapse
|
||||
the latent into a flat map. Stay tuned for that..
|
||||
|
||||
# Training BYOL
|
||||
|
||||
In this directory, you will find a sample training config for training BYOL on DIV2K. You will
|
||||
likely want to insert your own model architecture first. Exchange out spinenet for your
|
||||
model architecture and change the `hidden_layer` parameter to a layer from your network
|
||||
that you want the BYOL model wrapper to hook into.
|
||||
|
||||
*hint: Your network architecture (including layer names) is printed out when running train.py
|
||||
against your network.*
|
||||
|
||||
Run the trainer by:
|
||||
|
||||
`python train.py -opt train_div2k_byol.yml`
|
86
recipes/byol/train_div2k_byol.yml
Normal file
86
recipes/byol/train_div2k_byol.yml
Normal file
|
@ -0,0 +1,86 @@
|
|||
#### general settings
|
||||
name: train_div2k_byol
|
||||
use_tb_logger: true
|
||||
model: extensibletrainer
|
||||
distortion: sr
|
||||
scale: 1
|
||||
gpu_ids: [0]
|
||||
fp16: false
|
||||
start_step: 0
|
||||
checkpointing_enabled: true # <-- Highly recommended for single-GPU training. Will not work with DDP.
|
||||
wandb: false
|
||||
|
||||
datasets:
|
||||
train:
|
||||
n_workers: 4
|
||||
batch_size: 32
|
||||
mode: byol_dataset
|
||||
crop_size: 256
|
||||
normalize: true
|
||||
dataset:
|
||||
mode: imagefolder
|
||||
paths: /content/div2k # <-- Put your path here. Note: full images.
|
||||
target_size: 256
|
||||
scale: 1
|
||||
|
||||
networks:
|
||||
generator:
|
||||
type: generator
|
||||
which_model_G: byol
|
||||
image_size: 256
|
||||
subnet: # <-- Specify your own network to pretrain here.
|
||||
which_model_G: spinenet
|
||||
arch: 49
|
||||
use_input_norm: true
|
||||
|
||||
hidden_layer: endpoint_convs.4.conv # <-- Specify a hidden layer from your network here.
|
||||
|
||||
#### path
|
||||
path:
|
||||
#pretrain_model_generator: <insert pretrained model path if desired>
|
||||
strict_load: true
|
||||
#resume_state: ../experiments/train_div2k_byol/training_state/0.state # <-- Set this to resume from a previous training state.
|
||||
|
||||
steps:
|
||||
generator:
|
||||
training: generator
|
||||
|
||||
optimizer_params:
|
||||
# Optimizer params
|
||||
lr: !!float 3e-4
|
||||
weight_decay: 0
|
||||
beta1: 0.9
|
||||
beta2: 0.99
|
||||
|
||||
injectors:
|
||||
gen_inj:
|
||||
type: generator
|
||||
generator: generator
|
||||
in: [aug1, aug2]
|
||||
out: loss
|
||||
|
||||
losses:
|
||||
byol_loss:
|
||||
type: direct
|
||||
key: loss
|
||||
weight: 1
|
||||
|
||||
train:
|
||||
niter: 500000
|
||||
warmup_iter: -1
|
||||
mega_batch_factor: 1 # <-- Gradient accumulation factor. If you are running OOM, increase this to [2,4,8].
|
||||
val_freq: 2000
|
||||
|
||||
# Default LR scheduler options
|
||||
default_lr_scheme: MultiStepLR
|
||||
gen_lr_steps: [50000, 100000, 150000, 200000]
|
||||
lr_gamma: 0.5
|
||||
|
||||
eval:
|
||||
output_state: loss
|
||||
|
||||
logger:
|
||||
print_freq: 30
|
||||
save_checkpoint_freq: 1000
|
||||
visuals: [hq, lq, aug1, aug2]
|
||||
visual_debug_rate: 100
|
Loading…
Reference in New Issue
Block a user